A Fuzzy Spatial Relationship Graph for Point Clouds Using Bounding Boxes

A. Buck, Derek T. Anderson, James M. Keller, R. Luke, G. Scott
{"title":"A Fuzzy Spatial Relationship Graph for Point Clouds Using Bounding Boxes","authors":"A. Buck, Derek T. Anderson, James M. Keller, R. Luke, G. Scott","doi":"10.1109/FUZZ45933.2021.9494462","DOIUrl":null,"url":null,"abstract":"Three dimensional point cloud data sets are easy to acquire and manipulate, but are often too large to process directly for embedded real-time applications. The spatial information in a point cloud can be represented in a variety of reduced forms, such as voxel grids, Gaussian mixture models, or spatial semantic structures. In this article, we show how a segmented point cloud can be represented as a spatial relationship graph using bounding boxes and triangular fuzzy numbers. This model is a lightweight encoding of the relative distance and direction between objects, and can be used to describe and query for particular spatial configurations using linguistic terms in a multicriteria framework. We show how this approach can be applied on a hand-segmented subset of the NPM3D data set with several illustrative examples. The work herein has useful applications in many applied domains, such as human-robot interaction with unmanned aerial systems.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Three dimensional point cloud data sets are easy to acquire and manipulate, but are often too large to process directly for embedded real-time applications. The spatial information in a point cloud can be represented in a variety of reduced forms, such as voxel grids, Gaussian mixture models, or spatial semantic structures. In this article, we show how a segmented point cloud can be represented as a spatial relationship graph using bounding boxes and triangular fuzzy numbers. This model is a lightweight encoding of the relative distance and direction between objects, and can be used to describe and query for particular spatial configurations using linguistic terms in a multicriteria framework. We show how this approach can be applied on a hand-segmented subset of the NPM3D data set with several illustrative examples. The work herein has useful applications in many applied domains, such as human-robot interaction with unmanned aerial systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用边界框的点云模糊空间关系图
三维点云数据集易于获取和操作,但通常太大而无法直接用于嵌入式实时应用。点云中的空间信息可以用各种简化形式表示,如体素网格、高斯混合模型或空间语义结构。在本文中,我们展示了如何使用边界框和三角模糊数将分割的点云表示为空间关系图。该模型是对象之间相对距离和方向的轻量级编码,可用于在多标准框架中使用语言术语描述和查询特定的空间配置。我们通过几个说明性示例展示了如何将这种方法应用于NPM3D数据集的手动分割子集。本文的工作在许多应用领域具有重要的应用价值,如无人机系统的人机交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI Models for Quality of Experience Prediction in Wireless Networks Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data Necessary and sufficient condition for the existence of Atanassov's Intuitionistic Fuzzy based additive definite integral Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1