A fuzzy-neural approach for the characterisation of the active microwave devices

B. Karlik, H. Torpi, M. Alci
{"title":"A fuzzy-neural approach for the characterisation of the active microwave devices","authors":"B. Karlik, H. Torpi, M. Alci","doi":"10.1109/CRMICO.2002.1137168","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are emerging as a powerful technology for RF and microwave characterization, modeling, and design. A neural modeler helps us to immediately start developing neural models for RF/microwave components and circuits and helps to provide neural models for our simulators. In this study, a novel fuzzy neural network structure is used for behavior of an active microwave device. Here, the device is modeled by a black box whose small signal and noise parameters are evaluated through a fuzzy clustering neural network based upon the fitting of both of these parameters.","PeriodicalId":378024,"journal":{"name":"12th International Conference Microwave and Telecommunication Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference Microwave and Telecommunication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRMICO.2002.1137168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Artificial neural networks are emerging as a powerful technology for RF and microwave characterization, modeling, and design. A neural modeler helps us to immediately start developing neural models for RF/microwave components and circuits and helps to provide neural models for our simulators. In this study, a novel fuzzy neural network structure is used for behavior of an active microwave device. Here, the device is modeled by a black box whose small signal and noise parameters are evaluated through a fuzzy clustering neural network based upon the fitting of both of these parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于有源微波器件表征的模糊神经网络方法
人工神经网络正在成为射频和微波表征、建模和设计的强大技术。神经建模器帮助我们立即开始开发射频/微波组件和电路的神经模型,并帮助为我们的模拟器提供神经模型。在这项研究中,一种新的模糊神经网络结构被用于有源微波器件的行为。在这里,设备由一个黑盒子来建模,黑盒子的小信号和噪声参数通过模糊聚类神经网络来评估,基于这两个参数的拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low loss phase shifter based on piezocontrolled dielectric composite Controlled power divider on the basis of thin-film ferroelectric elements Retrieval of fast processes distorted by integrated circuits Application of the software for BWA systems for analysis and design Microwave diagnostics of cubic boron nitride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1