The Efficiency Analysis of Various Structural Solutions of the Wheel Motor Cooling Systems

B. Będkowski, P. Dukalski, T. Jarek, T. Wolnik
{"title":"The Efficiency Analysis of Various Structural Solutions of the Wheel Motor Cooling Systems","authors":"B. Będkowski, P. Dukalski, T. Jarek, T. Wolnik","doi":"10.1109/ICELMACH.2018.8506886","DOIUrl":null,"url":null,"abstract":"The analysis of the performance of various structural solutions of the cooling system for the in wheel car motor is presented in the work. The analysis was conducted on the prepared spatial calculation models using the CFD software. The maximum motor temperature for various solutions of the stator support structure and for different shapes of the water jacket channel was determined as a result of simulation. The analysis for a steady state with constant losses corresponding to the S1 motor operation point and the constant flow of the cooling medium was carried out. The calculations were made by building separate discrete models for each analyzed case. The information how the structural changes affect the efficiency of the cooling system and how to improve the prototype of the in wheel car motor was given as a result of conducted thermal simulations.","PeriodicalId":292261,"journal":{"name":"2018 XIII International Conference on Electrical Machines (ICEM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XIII International Conference on Electrical Machines (ICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELMACH.2018.8506886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The analysis of the performance of various structural solutions of the cooling system for the in wheel car motor is presented in the work. The analysis was conducted on the prepared spatial calculation models using the CFD software. The maximum motor temperature for various solutions of the stator support structure and for different shapes of the water jacket channel was determined as a result of simulation. The analysis for a steady state with constant losses corresponding to the S1 motor operation point and the constant flow of the cooling medium was carried out. The calculations were made by building separate discrete models for each analyzed case. The information how the structural changes affect the efficiency of the cooling system and how to improve the prototype of the in wheel car motor was given as a result of conducted thermal simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车轮电机冷却系统各种结构方案的效率分析
对轮式汽车电机冷却系统的各种结构方案进行了性能分析。利用CFD软件对制备的空间计算模型进行了分析。通过仿真计算,确定了不同定子支撑结构方案和不同水套通道形状下的电机最高温度。对S1电机工作点对应的恒损耗稳态和冷却介质的恒流量进行了分析。计算是通过为每个分析案例建立独立的离散模型来完成的。通过热模拟,给出了结构变化对冷却系统效率的影响以及如何改进轮式汽车电机原型的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Fault- Tolerant PM Motors with Independent Phases by Finite Element Method Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine Design of Low Power Motors with a Good Compromise Between Ripple Torque and Radial Forces Joint Design of Halbach Segmented Array and Distributed Stator Winding Comparative Design Analysis of Three-Phase Switched Reluctance Generators for Micro-Wind Power Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1