A Machine Learning Approach for Ethnic Classification: The British Pakistani Face

S. Jilani, H. Ugail, A. M. Bukar, Andrew Logan, T. Munshi
{"title":"A Machine Learning Approach for Ethnic Classification: The British Pakistani Face","authors":"S. Jilani, H. Ugail, A. M. Bukar, Andrew Logan, T. Munshi","doi":"10.1109/CW.2017.27","DOIUrl":null,"url":null,"abstract":"Ethnicity is one of the most salient clues to face identity. Analysis of ethnicity-specific facial data is a challenging problem and predominantly carried out using computer-based algorithms. Current published literature focusses on the use of frontal face images. We addressed the challenge of binary (British Pakistani or other ethnicity) ethnicity classification using profile facial images. The proposed framework is based on the extraction of geometric features using 10 anthropometric facial landmarks, within a purpose-built, novel database of 135 multi-ethnic and multi-racial subjects and a total of 675 face images. Image dimensionality was reduced using Principle Component Analysis and Partial Least Square Regression. Classification was performed using Linear Support Vector Machine. The results of this framework are promising with 71.11% ethnic classification accuracy using a PCA algorithm + SVM as a classifier, and 76.03% using PLS algorithm + SVM as a classifier.","PeriodicalId":309728,"journal":{"name":"2017 International Conference on Cyberworlds (CW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2017.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Ethnicity is one of the most salient clues to face identity. Analysis of ethnicity-specific facial data is a challenging problem and predominantly carried out using computer-based algorithms. Current published literature focusses on the use of frontal face images. We addressed the challenge of binary (British Pakistani or other ethnicity) ethnicity classification using profile facial images. The proposed framework is based on the extraction of geometric features using 10 anthropometric facial landmarks, within a purpose-built, novel database of 135 multi-ethnic and multi-racial subjects and a total of 675 face images. Image dimensionality was reduced using Principle Component Analysis and Partial Least Square Regression. Classification was performed using Linear Support Vector Machine. The results of this framework are promising with 71.11% ethnic classification accuracy using a PCA algorithm + SVM as a classifier, and 76.03% using PLS algorithm + SVM as a classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
种族分类的机器学习方法:英国巴基斯坦面孔
种族是面对身份最显著的线索之一。分析特定种族的面部数据是一个具有挑战性的问题,主要使用基于计算机的算法进行。目前发表的文献集中在正面面部图像的使用上。我们使用侧面面部图像解决了二元(英国、巴基斯坦或其他种族)种族分类的挑战。提出的框架是基于在135个多民族和多种族受试者和总共675张人脸图像的专门构建的新数据库中,使用10个人体测量面部地标提取几何特征。利用主成分分析和偏最小二乘回归对图像进行降维。使用线性支持向量机进行分类。该框架使用PCA算法+ SVM作为分类器的种族分类准确率为71.11%,使用PLS算法+ SVM作为分类器的种族分类准确率为76.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Audio Models for Virtual Reality Video Humans as Avatars in Smart and Playable Cities Traversing Social Networks in the Virtual Dance Hall: Visualizing History in VR Artificial Folklore for Simulated Religions A Time-Line Approach for the Generation of Simulated Settlements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1