Toward Symbolic Regression based Model Transform for Convolutional Neural Network

Kisung Seo, Seok-Beom Roh, Soon-Joe Gwon
{"title":"Toward Symbolic Regression based Model Transform for Convolutional Neural Network","authors":"Kisung Seo, Seok-Beom Roh, Soon-Joe Gwon","doi":"10.1145/3583133.3596942","DOIUrl":null,"url":null,"abstract":"This paper introduces a symbolic regression based filter transform for convolutional neural network using CGP (Cartesian Genetic Programming). Symbolic regression is a powerful technique to discover analytic equations that describe data, which can lead to explainable models and the ability to predict unseen data. In contrast, neural networks have achieved amazing levels of accuracy on image recognition and natural language processing tasks, but they are often seen as black-box models that are difficult to interpret and typically extrapolate poorly. symbolic regression approaches to deep learning are underexplored.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a symbolic regression based filter transform for convolutional neural network using CGP (Cartesian Genetic Programming). Symbolic regression is a powerful technique to discover analytic equations that describe data, which can lead to explainable models and the ability to predict unseen data. In contrast, neural networks have achieved amazing levels of accuracy on image recognition and natural language processing tasks, but they are often seen as black-box models that are difficult to interpret and typically extrapolate poorly. symbolic regression approaches to deep learning are underexplored.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于符号回归的卷积神经网络模型变换研究
介绍了一种基于符号回归的卷积神经网络滤波器变换,该变换采用笛卡尔遗传规划方法。符号回归是一种强大的技术,可以发现描述数据的分析方程,这可以导致可解释的模型和预测未知数据的能力。相比之下,神经网络在图像识别和自然语言处理任务上取得了惊人的准确性,但它们通常被视为难以解释且通常推断不佳的黑箱模型。深度学习的符号回归方法尚未得到充分探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Q-learning Assisted Ant Colony Optimization for Vehicle Routing Problems with Time Windows Iterative Structure-Based Genetic Programming for Neural Architecture Search Bayesian Optimization For Choice Data Exploring Adaptive Components of SOMA Evaluation of the impact of various modifications to CMA-ES that facilitate its theoretical analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1