Multi-site heterogeneous system fusions for the Albayzin 2010 Language Recognition Evaluation

Luis Javier Rodriguez-Fuentes, M. Peñagarikano, A. Varona, M. Díez, Germán Bordel, D. M. González, Jesús Antonio Villalba López, A. Miguel, A. Ortega, EDUARDO LLEIDA SOLANO, A. Abad, Oscar Koller, I. Trancoso, Paula Lopez-Otero, Laura Docío Fernández, C. García-Mateo, R. Saeidi, Mehdi Soufifar, T. Kinnunen, T. Svendsen, P. Fränti
{"title":"Multi-site heterogeneous system fusions for the Albayzin 2010 Language Recognition Evaluation","authors":"Luis Javier Rodriguez-Fuentes, M. Peñagarikano, A. Varona, M. Díez, Germán Bordel, D. M. González, Jesús Antonio Villalba López, A. Miguel, A. Ortega, EDUARDO LLEIDA SOLANO, A. Abad, Oscar Koller, I. Trancoso, Paula Lopez-Otero, Laura Docío Fernández, C. García-Mateo, R. Saeidi, Mehdi Soufifar, T. Kinnunen, T. Svendsen, P. Fränti","doi":"10.1109/ASRU.2011.6163961","DOIUrl":null,"url":null,"abstract":"Best language recognition performance is commonly obtained by fusing the scores of several heterogeneous systems. Regardless the fusion approach, it is assumed that different systems may contribute complementary information, either because they are developed on different datasets, or because they use different features or different modeling approaches. Most authors apply fusion as a final resource for improving performance based on an existing set of systems. Though relative performance gains decrease as larger sets of systems are considered, best performance is usually attained by fusing all the available systems, which may lead to high computational costs. In this paper, we aim to discover which technologies combine the best through fusion and to analyse the factors (data, features, modeling methodologies, etc.) that may explain such a good performance. Results are presented and discussed for a number of systems provided by the participating sites and the organizing team of the Albayzin 2010 Language Recognition Evaluation. We hope the conclusions of this work help research groups make better decisions in developing language recognition technology.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Best language recognition performance is commonly obtained by fusing the scores of several heterogeneous systems. Regardless the fusion approach, it is assumed that different systems may contribute complementary information, either because they are developed on different datasets, or because they use different features or different modeling approaches. Most authors apply fusion as a final resource for improving performance based on an existing set of systems. Though relative performance gains decrease as larger sets of systems are considered, best performance is usually attained by fusing all the available systems, which may lead to high computational costs. In this paper, we aim to discover which technologies combine the best through fusion and to analyse the factors (data, features, modeling methodologies, etc.) that may explain such a good performance. Results are presented and discussed for a number of systems provided by the participating sites and the organizing team of the Albayzin 2010 Language Recognition Evaluation. We hope the conclusions of this work help research groups make better decisions in developing language recognition technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Albayzin 2010语言识别评价的多站点异构系统融合
最好的语言识别性能通常是通过融合多个异构系统的分数来获得的。不管采用哪种融合方法,假设不同的系统可能提供互补的信息,要么是因为它们是在不同的数据集上开发的,要么是因为它们使用不同的特征或不同的建模方法。大多数作者将融合作为基于现有系统集改进性能的最终资源。虽然考虑到更大的系统集时,相对性能收益会降低,但通常通过融合所有可用系统来获得最佳性能,这可能导致较高的计算成本。在本文中,我们的目标是发现哪些技术通过融合结合得最好,并分析可能解释这种良好性能的因素(数据,特征,建模方法等)。本文介绍并讨论了由参与网站和Albayzin 2010语言识别评估组织团队提供的一些系统的结果。我们希望这项工作的结论可以帮助研究小组在开发语言识别技术方面做出更好的决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1