Benedikt Pesendorfer, E. Widl, W. Gawlik, R. Hofmann
{"title":"Co-simulation and control of power-to-heat units in coupled electrical and thermal distribution networks","authors":"Benedikt Pesendorfer, E. Widl, W. Gawlik, R. Hofmann","doi":"10.1109/MSCPES.2018.8405396","DOIUrl":null,"url":null,"abstract":"There is significant interest in exploiting the hitherto unused synergies by coupling different energy-carrier networks, such as district heating and electrical distribution networks. This paper addresses the ongoing effort in modeling and simulation of the physical and cyber-physical domains of these so-called hybrid thermal-electric networks. The focus thereby is to use tools and semantics that are natural to each of the involved domains. A hierarchical control approach for power-to-heat appliances, taking into account the different involved actors in such a multi-energy network, is presented. At the application level we show how this approach enables the control of electrically heated storage tanks to couple an electrical distribution network with a district heating network. Co-simulation based on the Functional Mock-up Interface is used as it provides a flexible industry-grade standard for coupling simulators and tools and facilitates implementation of advanced control designs. This work contributes in establishing a framework to derive and test complex control strategies for power-to-heat appliances used to couple the different domains and the inherent time scales of hybrid thermal-electrical networks.","PeriodicalId":196649,"journal":{"name":"2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSCPES.2018.8405396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
There is significant interest in exploiting the hitherto unused synergies by coupling different energy-carrier networks, such as district heating and electrical distribution networks. This paper addresses the ongoing effort in modeling and simulation of the physical and cyber-physical domains of these so-called hybrid thermal-electric networks. The focus thereby is to use tools and semantics that are natural to each of the involved domains. A hierarchical control approach for power-to-heat appliances, taking into account the different involved actors in such a multi-energy network, is presented. At the application level we show how this approach enables the control of electrically heated storage tanks to couple an electrical distribution network with a district heating network. Co-simulation based on the Functional Mock-up Interface is used as it provides a flexible industry-grade standard for coupling simulators and tools and facilitates implementation of advanced control designs. This work contributes in establishing a framework to derive and test complex control strategies for power-to-heat appliances used to couple the different domains and the inherent time scales of hybrid thermal-electrical networks.