Towards learning a partitioning advisor with deep reinforcement learning

Benjamin Hilprecht, Carsten Binnig, Uwe Röhm
{"title":"Towards learning a partitioning advisor with deep reinforcement learning","authors":"Benjamin Hilprecht, Carsten Binnig, Uwe Röhm","doi":"10.1145/3329859.3329876","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a partitioning advisor for analytical workloads based on Deep Reinforcement Learning. In contrast to existing approaches for automated partitioning design, an RL agent learns its decisions based on experience by trying out different partitionings and monitoring the rewards for different workloads. In our experimental evaluation with a distributed database and various complex schemata, we show that our learned partitioning advisor is thus not only able to find partitionings that outperform existing approaches for automated data partitioning but is also able to find non-obvious partitionings.","PeriodicalId":118194,"journal":{"name":"Proceedings of the Second International Workshop on Exploiting Artificial Intelligence Techniques for Data Management","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Workshop on Exploiting Artificial Intelligence Techniques for Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3329859.3329876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper we introduce a partitioning advisor for analytical workloads based on Deep Reinforcement Learning. In contrast to existing approaches for automated partitioning design, an RL agent learns its decisions based on experience by trying out different partitionings and monitoring the rewards for different workloads. In our experimental evaluation with a distributed database and various complex schemata, we show that our learned partitioning advisor is thus not only able to find partitionings that outperform existing approaches for automated data partitioning but is also able to find non-obvious partitionings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用深度强化学习学习分区建议器
本文介绍了一种基于深度强化学习的分析工作负载分区建议器。与现有的自动分区设计方法相比,RL代理通过尝试不同的分区并监控不同工作负载的奖励来根据经验学习决策。在我们对分布式数据库和各种复杂模式的实验评估中,我们表明,我们学习的分区顾问不仅能够找到优于现有自动数据分区方法的分区,而且还能够找到不明显的分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Considerations for handling updates in learned index structures Cardinality estimation with local deep learning models Towards learning a partitioning advisor with deep reinforcement learning Question answering via web extracted tables Learning to optimize federated queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1