Bi-objective portfolio optimization using Archive Multi-objective Simulated Annealing

Tanmay Sen, S. Saha, Asif Ekbal, A. Laha
{"title":"Bi-objective portfolio optimization using Archive Multi-objective Simulated Annealing","authors":"Tanmay Sen, S. Saha, Asif Ekbal, A. Laha","doi":"10.1109/ICHPCA.2014.7045343","DOIUrl":null,"url":null,"abstract":"In the current paper, Bi-objective portfolio optimization problem has been tackled using multiobjective optimization framework. Three popular multiobjective optimization algorithms are used for solving this problem. These are: Archive Multi-objective Simulated Annealing (AMOSA) algorithm, Non-dominated Sorting Genetic algorithm II (NSGA-II) and Multi-objective Particle Swarm Optimization using Crowding distance (MOPSOCD). For each algorithm we trace the Pareto optimal front and compare the results by using four comparisons metrics, Spread, Spacing, Set Coverage and Maximum Spread. Comparative results show that NSGA-II performs the best as compared to the other two algorithms.","PeriodicalId":197528,"journal":{"name":"2014 International Conference on High Performance Computing and Applications (ICHPCA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on High Performance Computing and Applications (ICHPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHPCA.2014.7045343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the current paper, Bi-objective portfolio optimization problem has been tackled using multiobjective optimization framework. Three popular multiobjective optimization algorithms are used for solving this problem. These are: Archive Multi-objective Simulated Annealing (AMOSA) algorithm, Non-dominated Sorting Genetic algorithm II (NSGA-II) and Multi-objective Particle Swarm Optimization using Crowding distance (MOPSOCD). For each algorithm we trace the Pareto optimal front and compare the results by using four comparisons metrics, Spread, Spacing, Set Coverage and Maximum Spread. Comparative results show that NSGA-II performs the best as compared to the other two algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于归档多目标模拟退火的双目标投资组合优化
本文采用多目标优化框架来解决双目标投资组合优化问题。三种常用的多目标优化算法用于解决该问题。这些算法包括:存档多目标模拟退火(AMOSA)算法、非支配排序遗传算法II (NSGA-II)和基于拥挤距离的多目标粒子群优化(MOPSOCD)。对于每种算法,我们都跟踪了Pareto最优前沿,并通过使用四个比较指标(Spread, Spacing, Set Coverage和Maximum Spread)来比较结果。对比结果表明,与其他两种算法相比,NSGA-II算法的性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DE-FPA: A hybrid differential evolution-flower pollination algorithm for function minimization Ultra-thin Si directly on insulator (SDOI) MOSFETs at 20 nm gate length Secured packet inspection with hierarchical pattern matching implemented using incremental clustering algorithm Lifting biorthogonal wavelet design for edge detection Test case prioritization techniques “an empirical study”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1