Extracting Pseudo-Labeled Samples for Sentiment Classification Using Emotion Keywords

Sophia Yat-Mei Lee, Daming Dai, Shoushan Li, K. Ahrens
{"title":"Extracting Pseudo-Labeled Samples for Sentiment Classification Using Emotion Keywords","authors":"Sophia Yat-Mei Lee, Daming Dai, Shoushan Li, K. Ahrens","doi":"10.1109/IALP.2011.61","DOIUrl":null,"url":null,"abstract":"Sentiment and emotion analysis have been traditionally established as independent research topics in NLP. Although they are two important aspects of subjective information and are closely related, there have been few attempts to combine the two analyses. As a preliminary attempt, we integrate emotion information into sentiment analysis by employing emotion keywords to help automatically extract pseudo-labeled samples. The extracted pseudo-labeled samples are then used as the initial training data to perform semi-supervised learning for sentiment classification. Experimental results across four domains show that our approach using emotion keywords is capable of extracting pseudo-labeled samples with high precision (about 90%). Moreover, the pseudo-labeled samples along with the semi-supervised learning approach further improve the classification performance.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sentiment and emotion analysis have been traditionally established as independent research topics in NLP. Although they are two important aspects of subjective information and are closely related, there have been few attempts to combine the two analyses. As a preliminary attempt, we integrate emotion information into sentiment analysis by employing emotion keywords to help automatically extract pseudo-labeled samples. The extracted pseudo-labeled samples are then used as the initial training data to perform semi-supervised learning for sentiment classification. Experimental results across four domains show that our approach using emotion keywords is capable of extracting pseudo-labeled samples with high precision (about 90%). Moreover, the pseudo-labeled samples along with the semi-supervised learning approach further improve the classification performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于情感关键词的伪标记样本情感分类
情感和情绪分析历来是自然语言处理中一个独立的研究课题。虽然它们是主观信息的两个重要方面,并且密切相关,但很少有人尝试将这两种分析结合起来。作为初步尝试,我们将情感信息整合到情感分析中,利用情感关键词帮助自动提取伪标签样本。然后将提取的伪标记样本用作初始训练数据,进行半监督学习以进行情感分类。跨四个领域的实验结果表明,我们使用情感关键词的方法能够以较高的精度(约90%)提取伪标记样本。此外,伪标记样本和半监督学习方法进一步提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Linguistics Approach for Persian Document Summarization Research on the Uyghur Information Database for Information Processing Research on Multi-document Summarization Model Based on Dynamic Manifold-Ranking Mining Parallel Data from Comparable Corpora via Triangulation A Query Reformulation Model Using Markov Graphic Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1