Estimation of lower-extremity muscle forces by using task-space information

Masashi Sekiya, Shota Itoh, Kunihiro Ogata, T. Tsuji
{"title":"Estimation of lower-extremity muscle forces by using task-space information","authors":"Masashi Sekiya, Shota Itoh, Kunihiro Ogata, T. Tsuji","doi":"10.1109/AMC.2016.7496380","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method of muscle force estimation based on the relationship between the muscle space and the task space using a general lower extremity model in the sagittal plane. In addition, we report a verification experiment using several active motion patterns with a training robot for the lower extremities. The results show that the muscle forces estimated by the proposed method exhibit good correlation with surface electromyograms. Moreover, it is confirmed that the proposed method can capture some muscle activities undetectable by conventional methods.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new method of muscle force estimation based on the relationship between the muscle space and the task space using a general lower extremity model in the sagittal plane. In addition, we report a verification experiment using several active motion patterns with a training robot for the lower extremities. The results show that the muscle forces estimated by the proposed method exhibit good correlation with surface electromyograms. Moreover, it is confirmed that the proposed method can capture some muscle activities undetectable by conventional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于任务空间信息的下肢肌力估计
本文提出了一种基于肌肉空间与任务空间关系的肌肉力估计新方法,该方法采用一般下肢矢状面模型。此外,我们报告了一个验证实验,使用几种主动运动模式与训练机器人的下肢。结果表明,用该方法估计的肌力与表面肌电图具有良好的相关性。此外,还证实了该方法可以捕捉到一些常规方法无法检测到的肌肉活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D modeling and nonlinear control using algorithmic differentiation for mono-wheel robot Robust H∞ control for Active Magnetic Bearing system with imbalance of the rotor Double-segment sliding mode control for permanent magnet synchronous motor servo drives High back-drivable pseudo I-PD torque control using load-side torque observer with torsion torque sensor Position control system based on inertia measurement unit sensor fusion with Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1