Multi-task Feature Learning for EEG-based Emotion Recognition Using Group Nonnegative Matrix Factorization

Ayoub Hajlaoui, M. Chetouani, S. Essid
{"title":"Multi-task Feature Learning for EEG-based Emotion Recognition Using Group Nonnegative Matrix Factorization","authors":"Ayoub Hajlaoui, M. Chetouani, S. Essid","doi":"10.23919/EUSIPCO.2018.8553390","DOIUrl":null,"url":null,"abstract":"Electroencephalographic sensors have proven to be promising for emotion recognition. Our study focuses on the recognition of valence and arousal levels using such sensors. Usually, ad hoc features are extracted for such recognition tasks. In this paper, we rely on automatic feature learning techniques instead. Our main contribution is the use of Group Nonnegative Matrix Factorization in a multi-task fashion, where we exploit both valence and arousal labels to control valence-related and arousal-related feature learning. Applying this method on HCI MAHNOB and EMOEEG, two databases where emotions are elicited by means of audiovisual stimuli and performing binary inter-session classification of valence labels, we obtain significant improvement of valence classification Fl scores in comparison to baseline frequency-band power features computed on predefined frequency bands. The valence classification F1 score is improved from 0.56 to 0.69 in the case of HCI MAHNOB, and from 0.56 to 0.59 in the case of EMOEEG.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electroencephalographic sensors have proven to be promising for emotion recognition. Our study focuses on the recognition of valence and arousal levels using such sensors. Usually, ad hoc features are extracted for such recognition tasks. In this paper, we rely on automatic feature learning techniques instead. Our main contribution is the use of Group Nonnegative Matrix Factorization in a multi-task fashion, where we exploit both valence and arousal labels to control valence-related and arousal-related feature learning. Applying this method on HCI MAHNOB and EMOEEG, two databases where emotions are elicited by means of audiovisual stimuli and performing binary inter-session classification of valence labels, we obtain significant improvement of valence classification Fl scores in comparison to baseline frequency-band power features computed on predefined frequency bands. The valence classification F1 score is improved from 0.56 to 0.69 in the case of HCI MAHNOB, and from 0.56 to 0.59 in the case of EMOEEG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于组非负矩阵分解的基于脑电图的情感识别多任务特征学习
脑电图传感器已被证明在情绪识别方面很有前途。我们的研究重点是利用这些传感器来识别效价和唤醒水平。通常,针对这类识别任务,需要提取特别的特征。在本文中,我们依赖于自动特征学习技术。我们的主要贡献是在多任务方式中使用组非负矩阵分解,其中我们利用价和唤醒标签来控制价相关和唤醒相关的特征学习。将该方法应用于HCI MAHNOB和EMOEEG这两个通过视听刺激引发情绪的数据库,并对价标签进行二元会话间分类,与在预定义频段上计算的基线频段功率特征相比,我们获得了价分类Fl分数的显着提高。HCI MAHNOB的价态分类F1评分从0.56提高到0.69,EMOEEG的价态分类F1评分从0.56提高到0.59。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1