{"title":"Landslide Pipe-Soil Interaction: State of the Practice","authors":"G. N. Eichhorn, S. Haigh","doi":"10.1115/IPC2018-78434","DOIUrl":null,"url":null,"abstract":"Current understanding of pipe-soil interaction during large ground movement events is insufficient due to their infrequency and the complexity of the infrastructure. Pipeline operators currently rely on a fully coupled continuum model of a landslide and pipeline interaction, or, more commonly, on a simplification of this interface using structural beam style soil-springs to transfer soil loads and displacements to the pipeline.\n The basis for soil-springs are laboratory studies based largely on clean sand or pure clay, and flat ground. Owing to the use of manufactured soils and flat ground, the soil-pipe interface modelling may not be valid for landslides.\n The loading of a pipeline in a landslide, and how the soil-spring factors should change with space and time are reviewed and may differ from commonly adopted guidelines. Physical modelling in research is emerging to study landslides and pipelines utilizing fully instrumented scale models. In the absence of fully instrumented field pipelines, physical modelling should be used to validate continuum models.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Current understanding of pipe-soil interaction during large ground movement events is insufficient due to their infrequency and the complexity of the infrastructure. Pipeline operators currently rely on a fully coupled continuum model of a landslide and pipeline interaction, or, more commonly, on a simplification of this interface using structural beam style soil-springs to transfer soil loads and displacements to the pipeline. The basis for soil-springs are laboratory studies based largely on clean sand or pure clay, and flat ground. Owing to the use of manufactured soils and flat ground, the soil-pipe interface modelling may not be valid for landslides. The loading of a pipeline in a landslide, and how the soil-spring factors should change with space and time are reviewed and may differ from commonly adopted guidelines. Physical modelling in research is emerging to study landslides and pipelines utilizing fully instrumented scale models. In the absence of fully instrumented field pipelines, physical modelling should be used to validate continuum models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滑坡管土相互作用:实践现状
目前对大型地面运动事件中管道-土壤相互作用的了解还不够充分,因为它们的频率不高,基础设施也很复杂。管道运营商目前依赖于滑坡和管道相互作用的完全耦合连续模型,或者更常见的是,使用结构梁式土弹簧简化该界面,将土壤载荷和位移传递给管道。土壤泉的基础是实验室研究,主要基于干净的沙子或纯粘土和平坦的地面。由于使用人造土和平坦地面,土-管界面模型可能不适用于滑坡。管道在滑坡中的载荷,以及土-弹簧因素如何随空间和时间变化的审查,可能不同于通常采用的指导方针。研究中的物理建模正在兴起,以研究利用完全仪器化的比例模型来研究滑坡和管道。在没有完全仪器化的现场管道的情况下,应该使用物理建模来验证连续体模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pipeline Dent Fatigue Crack Leak Rate for Liquids Pipelines and the Application to Release Consequence Assessment Automated Creation of the Pipeline Digital Twin During Construction: Improvement to Construction Quality and Pipeline Integrity Accelerating Industry Performance Through Collaborative Continual Improvement Assessment of Stress Based Design Pipelines Experiencing High Axial Strains The Application of Bayesian Network Threat Model for Corrosion Assessment of Pipeline in Design Stage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1