Kevin Loughlin, S. Saroiu, A. Wolman, Yatin A. Manerkar, Baris Kasikci
{"title":"MOESI-prime: preventing coherence-induced hammering in commodity workloads","authors":"Kevin Loughlin, S. Saroiu, A. Wolman, Yatin A. Manerkar, Baris Kasikci","doi":"10.1145/3470496.3527427","DOIUrl":null,"url":null,"abstract":"Prior work shows that Rowhammer attacks---which flip bits in DRAM via frequent activations of the same row(s)---are viable. Adversaries typically mount these attacks via instruction sequences that are carefully-crafted to bypass CPU caches. However, we discover a novel form of hammering that we refer to as coherence-induced hammering, caused by Intel's implementations of cache coherent non-uniform memory access (ccNUMA) protocols. We show that this hammering occurs in commodity benchmarks on a major cloud provider's production hardware, the first hammering found to be generated by non-malicious code. Given DRAM's rising susceptibility to bit flips, it is paramount to prevent coherence-induced hammering to ensure reliability and security in the cloud. Accordingly, we introduce MOESI-prime, a ccNUMA coherence protocol that mitigates coherence-induced hammering while retaining Intel's state-of-the-art scalability. MOESI-prime shows that most DRAM reads and writes triggering such hammering are unnecessary. Thus, by encoding additional information in the coherence protocol, MOESI-prime can omit these reads and writes, preventing coherence-induced hammering in non-malicious and malicious workloads. Furthermore, by omitting unnecessary reads and writes, MOESI-prime has negligible effect on average performance (within ±0.61% of MESI and MOESI) and average DRAM power (0.03%-0.22% improvement) across evaluated ccNUMA configurations.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Prior work shows that Rowhammer attacks---which flip bits in DRAM via frequent activations of the same row(s)---are viable. Adversaries typically mount these attacks via instruction sequences that are carefully-crafted to bypass CPU caches. However, we discover a novel form of hammering that we refer to as coherence-induced hammering, caused by Intel's implementations of cache coherent non-uniform memory access (ccNUMA) protocols. We show that this hammering occurs in commodity benchmarks on a major cloud provider's production hardware, the first hammering found to be generated by non-malicious code. Given DRAM's rising susceptibility to bit flips, it is paramount to prevent coherence-induced hammering to ensure reliability and security in the cloud. Accordingly, we introduce MOESI-prime, a ccNUMA coherence protocol that mitigates coherence-induced hammering while retaining Intel's state-of-the-art scalability. MOESI-prime shows that most DRAM reads and writes triggering such hammering are unnecessary. Thus, by encoding additional information in the coherence protocol, MOESI-prime can omit these reads and writes, preventing coherence-induced hammering in non-malicious and malicious workloads. Furthermore, by omitting unnecessary reads and writes, MOESI-prime has negligible effect on average performance (within ±0.61% of MESI and MOESI) and average DRAM power (0.03%-0.22% improvement) across evaluated ccNUMA configurations.