Data Visualization with Probabilistic Clustering and Neighbor Embedding

Xiaohui Liao, Jingqi Yan
{"title":"Data Visualization with Probabilistic Clustering and Neighbor Embedding","authors":"Xiaohui Liao, Jingqi Yan","doi":"10.23919/CHICC.2018.8482651","DOIUrl":null,"url":null,"abstract":"In the era of information explosion, processing and analyzing large-scale and high-dimensional data sets has become a big challenge for data mining and machine learning. In order to obtain and intuitively understand the information underlying the big data, an effective visualization technique is on demand. Many successful visualization techniques project high-dimensional data sets into low-dimensional spaces so that we can present data points in scatter plots, histograms or parallel coordinate plots. In this paper, we propose a new algorithm called PCNE, the algorithm first performs a probabilistic clustering algorithm for coarse classification on the data sets, and then reconstruct the joint probability with the heuristic information of classification results and neighborhood relationship. Our experimental results on the public data sets demonstrate that the PCNE algorithm outperforms the classical embedding algorithms in revealing both local and global structures of data.","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8482651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of information explosion, processing and analyzing large-scale and high-dimensional data sets has become a big challenge for data mining and machine learning. In order to obtain and intuitively understand the information underlying the big data, an effective visualization technique is on demand. Many successful visualization techniques project high-dimensional data sets into low-dimensional spaces so that we can present data points in scatter plots, histograms or parallel coordinate plots. In this paper, we propose a new algorithm called PCNE, the algorithm first performs a probabilistic clustering algorithm for coarse classification on the data sets, and then reconstruct the joint probability with the heuristic information of classification results and neighborhood relationship. Our experimental results on the public data sets demonstrate that the PCNE algorithm outperforms the classical embedding algorithms in revealing both local and global structures of data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率聚类和邻居嵌入的数据可视化
在信息爆炸时代,处理和分析大规模、高维的数据集已经成为数据挖掘和机器学习的一大挑战。为了获取和直观地理解大数据背后的信息,需要一种有效的可视化技术。许多成功的可视化技术将高维数据集投影到低维空间中,这样我们就可以在散点图、直方图或平行坐标图中呈现数据点。本文提出了一种新的PCNE算法,该算法首先对数据集进行粗分类的概率聚类算法,然后利用分类结果和邻域关系的启发式信息重构联合概率。我们在公共数据集上的实验结果表明,PCNE算法在揭示数据的局部和全局结构方面优于经典嵌入算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Delta Operator Based Fault Detection Filter Design for Uncertain Steer-by-Wire Systems with Time Delay Trajectory Planning of Quadrotor UAV with Suspended Payload Based on Predictive Control A Harmonic Compensation Method for Three-level Active Power Filter Based on Predictive Control Minimum Distance Dominating Set in Complex Networks Vibration Compensator for Magnetically Suspended Rotors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1