O. Okusaga, E. Adles, Weimin Zhou, C. Menyuk, G. Carter, E. Levy, M. Horowitz
{"title":"Spurious-mode suppression in optoelectronic oscillators","authors":"O. Okusaga, E. Adles, Weimin Zhou, C. Menyuk, G. Carter, E. Levy, M. Horowitz","doi":"10.1109/FREQ.2010.5556272","DOIUrl":null,"url":null,"abstract":"Optoelectronic oscillators (OEOs) are promising low phase noise radio frequency sources. However, the long fiber loops required for a high Oscillator Q also lead to spurious modes (spurs) spaced too narrowly to be filtered by standard electronic devices. As a solution to this problem, the dual injection-locked OEo (DIL-OEO) has been proposed and studied. Previously, we presented experimental data demonstrating spur suppression in the DIL-OEO. We also developed theoretical models enabling us to optimize the DIL-OEO. In this work, we present data demonstrating 60 dB suppression of the nearest-neighbour spur in a high-Q OEO without increasing the phase noise within 1 kHz of the 10 GHz oscillating mode.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2010.5556272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Optoelectronic oscillators (OEOs) are promising low phase noise radio frequency sources. However, the long fiber loops required for a high Oscillator Q also lead to spurious modes (spurs) spaced too narrowly to be filtered by standard electronic devices. As a solution to this problem, the dual injection-locked OEo (DIL-OEO) has been proposed and studied. Previously, we presented experimental data demonstrating spur suppression in the DIL-OEO. We also developed theoretical models enabling us to optimize the DIL-OEO. In this work, we present data demonstrating 60 dB suppression of the nearest-neighbour spur in a high-Q OEO without increasing the phase noise within 1 kHz of the 10 GHz oscillating mode.