{"title":"Electronic and transport properties of armchair and zigzag sp3-hybridized silicane nanoribbons","authors":"Jiseok Kim, M. Fischetti, S. Aboud","doi":"10.1109/IWCE.2012.6242839","DOIUrl":null,"url":null,"abstract":"The electronic and transport properties of sp3-hybridized armchair and zigzag edge silicane nanoribbons have been investigated using nonlocal empirical pseudopotentials and ab-initio calculations. Compared to the armchair graphene nanoribbons, silicane ribbons do no suffer from the chirality dependence of the band gap. Calculated low-field electron mobility and ballistic conductance show a strong edge dependence due to a difference in the effective masses and momentum relaxation rates along the transport direction. Smaller effective masses and momentum relaxation rates in the zigzag edge ribbons results in the electron mobility as much as an order of magnitude larger than the armchair edge ribbons.","PeriodicalId":375453,"journal":{"name":"2012 15th International Workshop on Computational Electronics","volume":"384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2012.6242839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The electronic and transport properties of sp3-hybridized armchair and zigzag edge silicane nanoribbons have been investigated using nonlocal empirical pseudopotentials and ab-initio calculations. Compared to the armchair graphene nanoribbons, silicane ribbons do no suffer from the chirality dependence of the band gap. Calculated low-field electron mobility and ballistic conductance show a strong edge dependence due to a difference in the effective masses and momentum relaxation rates along the transport direction. Smaller effective masses and momentum relaxation rates in the zigzag edge ribbons results in the electron mobility as much as an order of magnitude larger than the armchair edge ribbons.