Team Symantlytical @ AutoMin 2021: Generating Readable Minutes with GPT-2 and BERT-based Automatic Minuting Approach

Amitesh Garg, Muskaan Singh
{"title":"Team Symantlytical @ AutoMin 2021: Generating Readable Minutes with GPT-2 and BERT-based Automatic Minuting Approach","authors":"Amitesh Garg, Muskaan Singh","doi":"10.21437/automin.2021-8","DOIUrl":null,"url":null,"abstract":"This paper describes our participation system run to Automatic Minuting @ Interspeech 2021 1 . The task was motivated towards generating automatic minutes. We make a initial step towards, namely Main Task A , Task B and Task C . The main task A, was to automatically create minutes from multiparty meeting transcripts, while task B to identify whether the minute belongs to the transcript and task C. GPT-2[1]. The shared task, consist-ing of three subtasks, required to produce, contrast and scruti-nize the meeting minutes. The process of automating minuting is considered to be one of the most challenging tasks in natural language processing and sequence-to-sequence transforma-tion. It involves testing the semantic meaningfulness, readability and reasonable adequacy of the Minutes produced in the system. In the proposed work, we have developed a system using pre-trained language models in order to generate dialogue summaries or minutes. The designed methodology considers cov-erage, adequacy and readability to produce the best utilizable summary of a meeting transcript with any length. Our evaluation results in subtask A achieve a score of 11% R-L which by far is the most challenging than subtask as it required systems to generate the rational minutes of the given meeting transcripts.","PeriodicalId":186820,"journal":{"name":"First Shared Task on Automatic Minuting at Interspeech 2021","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Shared Task on Automatic Minuting at Interspeech 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/automin.2021-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes our participation system run to Automatic Minuting @ Interspeech 2021 1 . The task was motivated towards generating automatic minutes. We make a initial step towards, namely Main Task A , Task B and Task C . The main task A, was to automatically create minutes from multiparty meeting transcripts, while task B to identify whether the minute belongs to the transcript and task C. GPT-2[1]. The shared task, consist-ing of three subtasks, required to produce, contrast and scruti-nize the meeting minutes. The process of automating minuting is considered to be one of the most challenging tasks in natural language processing and sequence-to-sequence transforma-tion. It involves testing the semantic meaningfulness, readability and reasonable adequacy of the Minutes produced in the system. In the proposed work, we have developed a system using pre-trained language models in order to generate dialogue summaries or minutes. The designed methodology considers cov-erage, adequacy and readability to produce the best utilizable summary of a meeting transcript with any length. Our evaluation results in subtask A achieve a score of 11% R-L which by far is the most challenging than subtask as it required systems to generate the rational minutes of the given meeting transcripts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
赛门铁克团队@ AutoMin 2021:使用GPT-2和基于bert的自动记录方法生成可读的记录
本文描述了我们的参与系统运行到自动记录@ Interspeech 2021 1。这项任务的动机是自动生成会议记录。我们第一步,即主任务a,任务B和任务C。主要任务A是根据多方会议记录自动创建会议记录,任务B是识别该会议记录是否属于会议记录和任务c。GPT-2[1]。共享任务由三个子任务组成,需要生成、对比和审查会议记录。自动记录过程被认为是自然语言处理和序列到序列转换中最具挑战性的任务之一。它包括测试系统生成的会议记录的语义意义、可读性和合理充分性。在提议的工作中,我们开发了一个使用预训练语言模型的系统,以生成对话摘要或会议记录。所设计的方法考虑到会议记录的覆盖范围、充分性和可读性,以产生任何长度的最佳可利用摘要。我们在子任务A中的评估结果达到11% R-L的分数,这是迄今为止最具挑战性的子任务,因为它需要系统生成给定会议记录的合理分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of the First Shared Task on Automatic Minuting (AutoMin) at Interspeech 2021 Team UEDIN @ AutoMin 2021: Creating Minutes by Learning to Filter an Extracted Summary Team Matus and Francesco @ AutoMin 2021: Towards Neural Summarization of Meetings Team ABC @ AutoMin 2021: Generating Readable Minutes with a BART-based Automatic Minuting Approach Team JU_PAD @ AutoMin 2021: MoM Generation from Multiparty Meeting Transcript
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1