Peat Depth Prediction System Using Long-Term MODIS Data And Random Forest Algorithm: A Case Study in Pulang Pisau, Kalimantan

Muhammad Fadhurrahman, A. H. Saputro
{"title":"Peat Depth Prediction System Using Long-Term MODIS Data And Random Forest Algorithm: A Case Study in Pulang Pisau, Kalimantan","authors":"Muhammad Fadhurrahman, A. H. Saputro","doi":"10.1109/ICISIT54091.2022.9872550","DOIUrl":null,"url":null,"abstract":"Peatlands have an important role as global climate regulators because they store global amounts of carbon which, if degraded, will result in increased concentrations of greenhouse gases in the atmosphere. Peatland mapping using satellite imagery is considered effective for classifying a land cover area. Previous studies concluded that satellite imagery can be used to classify a peat area and a non-peat area. In this study, we use satellite imagery with a mounted MODIS sensor from 2015-2019 and calculate the index from MODIS bands. The Machine Learning (ML) method was used for generating a peat depth in Pulang Pisau, Kalimantan. Random Forest (RF), Support Vector Machine (SVM), Support Vector Regressor (SVR), Gradient Boosting (GB), and Ada Boost (AB) models were used to generate a peat depth map. The best performance was achieved by RF Classifier with accuracy 0.93 and RF Regressor with ${R}^{2}=0.88$","PeriodicalId":214014,"journal":{"name":"2022 1st International Conference on Information System & Information Technology (ICISIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 1st International Conference on Information System & Information Technology (ICISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIT54091.2022.9872550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Peatlands have an important role as global climate regulators because they store global amounts of carbon which, if degraded, will result in increased concentrations of greenhouse gases in the atmosphere. Peatland mapping using satellite imagery is considered effective for classifying a land cover area. Previous studies concluded that satellite imagery can be used to classify a peat area and a non-peat area. In this study, we use satellite imagery with a mounted MODIS sensor from 2015-2019 and calculate the index from MODIS bands. The Machine Learning (ML) method was used for generating a peat depth in Pulang Pisau, Kalimantan. Random Forest (RF), Support Vector Machine (SVM), Support Vector Regressor (SVR), Gradient Boosting (GB), and Ada Boost (AB) models were used to generate a peat depth map. The best performance was achieved by RF Classifier with accuracy 0.93 and RF Regressor with ${R}^{2}=0.88$
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于长期MODIS数据和随机森林算法的泥炭深度预测系统——以加里曼丹Pulang Pisau为例
泥炭地作为全球气候调节器具有重要作用,因为它们储存了全球数量的碳,如果退化,将导致大气中温室气体浓度增加。利用卫星图像绘制泥炭地地图被认为是对土地覆盖区域进行分类的有效方法。以前的研究得出结论,卫星图像可以用来划分泥炭区和非泥炭区。在本研究中,我们使用了2015-2019年安装MODIS传感器的卫星图像,并计算了MODIS波段的指数。机器学习(ML)方法用于在加里曼丹Pulang Pisau产生泥炭深度。使用随机森林(RF)、支持向量机(SVM)、支持向量回归(SVR)、梯度增强(GB)和Ada Boost (AB)模型生成泥炭深度图。RF分类器的准确率为0.93,RF回归器的准确率为${R}^{2}=0.88$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Employee Attendance Mobile Application Problems Based on User Reviews: A Case Study Information System Analysis And Design For Mobile-Based Homain Applications Classification of Glaucoma in Fundus Images Using Convolutional Neural Network with MobileNet Architecture Kampusku: Information Portal Mobile Application Design of Private Universities in Indonesia Measurement of Employee Information Security Awareness on Data Security: A Case Study at XYZ Polytechnic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1