Comparison Of Normal-Based and Beta-Based Regression Models on Ratio/ Proportion Data

P. Sihombing
{"title":"Comparison Of Normal-Based and Beta-Based Regression Models on Ratio/ Proportion Data","authors":"P. Sihombing","doi":"10.11594/jesi.02.01.03","DOIUrl":null,"url":null,"abstract":"This study compares the regression using the assumption of a normal distribution with a beta distribution on ratio/proportion data. The data used is the Gini ratio data as the dependent variable and the percentage of the poor, economic growth and unemployment as independent variables in 2021. The data used is sourced from the Central Statistics Agency. The criteria for selecting the best model are based on the smallest AIC and BIC criteria. The results obtained by the beta regression model are better than the model based on the normal distribution. This result is reflected by the probability value of the model suitability test and the error value which the smaller AIC and BIC reflect. The poverty variable has a significant effect on the Gini ratio. On the other hand, there is not enough evidence that the variables of economic growth and open unemployment affect the Gini ratio. From the results obtained, it is hoped that the government will be able to implement appropriate policies in overcoming inequality so that every level of society can feel welfare without exception.","PeriodicalId":136508,"journal":{"name":"Jurnal Ekonomi Dan Statistik Indonesia","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ekonomi Dan Statistik Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11594/jesi.02.01.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study compares the regression using the assumption of a normal distribution with a beta distribution on ratio/proportion data. The data used is the Gini ratio data as the dependent variable and the percentage of the poor, economic growth and unemployment as independent variables in 2021. The data used is sourced from the Central Statistics Agency. The criteria for selecting the best model are based on the smallest AIC and BIC criteria. The results obtained by the beta regression model are better than the model based on the normal distribution. This result is reflected by the probability value of the model suitability test and the error value which the smaller AIC and BIC reflect. The poverty variable has a significant effect on the Gini ratio. On the other hand, there is not enough evidence that the variables of economic growth and open unemployment affect the Gini ratio. From the results obtained, it is hoped that the government will be able to implement appropriate policies in overcoming inequality so that every level of society can feel welfare without exception.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于正态和基于beta的比率/比例数据回归模型的比较
本研究比较了在比率/比例数据上使用正态分布假设和beta分布的回归。使用的数据以2021年的基尼系数数据为因变量,以贫困人口比例、经济增长和失业率为自变量。所使用的数据来自中央统计局。选择最佳模型的标准是基于最小的AIC和BIC标准。采用β回归模型得到的结果优于基于正态分布的模型。这一结果反映在模型适用性检验的概率值和较小的AIC和BIC所反映的误差值上。贫困变量对基尼系数有显著影响。另一方面,没有足够的证据表明经济增长和公开失业的变量会影响基尼系数。从所得的结果来看,希望政府能够实施适当的政策来克服不平等,使社会各阶层都能毫无例外地感受到福利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pengeluaran Pemerintah Daerah dan Rumah Tangga untuk Pendidikan menurut Kelompok Pendapatan Application of Panel Regression Model in Gender Studies in East Java Optimalisasi Penerapan Metode ARIMA dalam Mengestimasi Harga Emas di Negara Indonesia Pengaruh Ketidakpastian Pendapatan Terhadap Status Kepemilikan Rumah di Indonesia Comparison of Regression Analysis with Machine Learning Supervised Predictive Model Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1