Background initialization with a new robust statistical approach

Hanzi Wang, D. Suter
{"title":"Background initialization with a new robust statistical approach","authors":"Hanzi Wang, D. Suter","doi":"10.1109/VSPETS.2005.1570910","DOIUrl":null,"url":null,"abstract":"Initializing a background model requires robust statistical methods as the task should be robust against random occurrences of foreground objects, as well as against general image noise. The median has been employed for the problem of background initialization. However, the median has only a breakdown point of 50%. In this paper, we propose a new robust method which can tolerate more than 50% of noise and foreground pixels in the background initialization process. We compare our new method with five others and give quantitative evaluations on background initialization. Experiments show that the proposed method achieves very promising results in background initialization.","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Initializing a background model requires robust statistical methods as the task should be robust against random occurrences of foreground objects, as well as against general image noise. The median has been employed for the problem of background initialization. However, the median has only a breakdown point of 50%. In this paper, we propose a new robust method which can tolerate more than 50% of noise and foreground pixels in the background initialization process. We compare our new method with five others and give quantitative evaluations on background initialization. Experiments show that the proposed method achieves very promising results in background initialization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的鲁棒统计方法的后台初始化
初始化背景模型需要稳健的统计方法,因为该任务应该对前景对象的随机出现以及一般图像噪声具有鲁棒性。中值已用于背景初始化问题。然而,中位数只有50%的分解点。本文提出了一种新的鲁棒方法,该方法可以在背景初始化过程中容忍超过50%的噪声和前景像素。我们将新方法与其他五种方法进行了比较,并对背景初始化进行了定量评价。实验表明,该方法在后台初始化方面取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On calibrating a camera network using parabolic trajectories of a bouncing ball Vehicle Class Recognition from Video-Based on 3D Curve Probes A Comparison of Active-Contour Models Based on Blurring and on Marginalization Validation of blind region learning and tracking Object tracking with dynamic feature graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1