{"title":"Efficient spoken term discovery using randomized algorithms","authors":"A. Jansen, Benjamin Van Durme","doi":"10.1109/ASRU.2011.6163965","DOIUrl":null,"url":null,"abstract":"Spoken term discovery is the task of automatically identifying words and phrases in speech data by searching for long repeated acoustic patterns. Initial solutions relied on exhaustive dynamic time warping-based searches across the entire similarity matrix, a method whose scalability is ultimately limited by the O(n2) nature of the search space. Recent strategies have attempted to improve search efficiency by using either unsupervised or mismatched-language acoustic models to reduce the complexity of the feature representation. Taking a completely different approach, this paper investigates the use of randomized algorithms that operate directly on the raw acoustic features to produce sparse approximate similarity matrices in O(n) space and O(n log n) time. We demonstrate these techniques facilitate spoken term discovery performance capable of outperforming a model-based strategy in the zero resource setting.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165
Abstract
Spoken term discovery is the task of automatically identifying words and phrases in speech data by searching for long repeated acoustic patterns. Initial solutions relied on exhaustive dynamic time warping-based searches across the entire similarity matrix, a method whose scalability is ultimately limited by the O(n2) nature of the search space. Recent strategies have attempted to improve search efficiency by using either unsupervised or mismatched-language acoustic models to reduce the complexity of the feature representation. Taking a completely different approach, this paper investigates the use of randomized algorithms that operate directly on the raw acoustic features to produce sparse approximate similarity matrices in O(n) space and O(n log n) time. We demonstrate these techniques facilitate spoken term discovery performance capable of outperforming a model-based strategy in the zero resource setting.