DOA Estimation using Planar Sparse Fractal Array

Kretika Goel, M. Agrawal, Subrat Kar
{"title":"DOA Estimation using Planar Sparse Fractal Array","authors":"Kretika Goel, M. Agrawal, Subrat Kar","doi":"10.1109/SSP53291.2023.10208047","DOIUrl":null,"url":null,"abstract":"The term fractal refers to the fractional dimensions that have recursive nature and when clubbed with the properties of sparse arrays leads to the generation of a novel array called a sparse fractal array. In this paper, we extend our research to the 2D domain by introducing planar sparse arrays which generate hole-free difference coarray and have OpN2q elements just like the OBA but here in the new closed box form, with the additional property of fractal arrays along with sparseness. To estimate azimuth and elevation angle we have designed planar sparse fractal arrays using nested arrays and coprime arrays as the fundamental basic generating array which helps in achieving a high degree of freedom which makes it useful for DOA estimation. Simulations show that the proposed planar arrays have the better estimation performance when compared with existing planar arrays like URA, OBA, and CPA.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The term fractal refers to the fractional dimensions that have recursive nature and when clubbed with the properties of sparse arrays leads to the generation of a novel array called a sparse fractal array. In this paper, we extend our research to the 2D domain by introducing planar sparse arrays which generate hole-free difference coarray and have OpN2q elements just like the OBA but here in the new closed box form, with the additional property of fractal arrays along with sparseness. To estimate azimuth and elevation angle we have designed planar sparse fractal arrays using nested arrays and coprime arrays as the fundamental basic generating array which helps in achieving a high degree of freedom which makes it useful for DOA estimation. Simulations show that the proposed planar arrays have the better estimation performance when compared with existing planar arrays like URA, OBA, and CPA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于平面稀疏分形阵列的DOA估计
术语分形是指具有递归性质的分数维,当与稀疏阵列的特性结合时,会产生一种称为稀疏分形阵列的新阵列。在本文中,我们将我们的研究扩展到二维领域,引入平面稀疏阵列,它产生无空穴差分共阵,并具有与OBA相同的OpN2q元素,但这里是新的闭盒形式,具有分形阵列的附加性质和稀疏性。为了估计方位角和仰角,我们设计了平面稀疏分形阵列,使用嵌套阵列和互素数阵列作为基本的基本生成阵列,这有助于实现高度的自由度,使其对DOA估计有用。仿真结果表明,与现有的URA、OBA和CPA等平面阵列相比,所提出的平面阵列具有更好的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1