Sanjeeb Shrestha, Gengfa Fang, E. Dutkiewicz, Xiaojing Huang
{"title":"Zeroforcing precoding based MAC design to address hidden terminals in MU-MIMO WLANs","authors":"Sanjeeb Shrestha, Gengfa Fang, E. Dutkiewicz, Xiaojing Huang","doi":"10.1109/ICT.2015.7124697","DOIUrl":null,"url":null,"abstract":"This paper focuses on the Medium Access Control (MAC) layer design for an inevitable Hidden Terminal problem in Multi User Multiple Input Multiple Output (MU-MIMO) Wireless Local Area Networks (WLANs). Specifically, our MAC design is supported by the precoding vectors obtained by Zeroforcing technique which are used to address the Hidden Terminals. An efficient channel sounding process is used by our MAC protocol to obtain the Channel State Information (CSI) from the desired and undesired clients which are used to calculate the precoding vectors at the transmitters (Access Points). Our MAC design then uses these precoding vectors in order to null interferences among the undesired clients to avoid collision of signals and to maintain the concurrent transmissions among the desired clients. The the parameters such as network capacity, signaling overheads and fairness are considered in the design. Our MAC layer design shows a slightly higher signaling overhead compared to RTS/CTS scheme. However, due to the concurrent transmissions after the handshaking process, the cost of singling overheads are compensated. The simulation study of our MAC layer design shows a remarkable constant network capacity gain of 4-5 times in comparison to traditional RTS/CTS. Moreover, the gain is irrespective to the available air-time.","PeriodicalId":375669,"journal":{"name":"2015 22nd International Conference on Telecommunications (ICT)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 22nd International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2015.7124697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper focuses on the Medium Access Control (MAC) layer design for an inevitable Hidden Terminal problem in Multi User Multiple Input Multiple Output (MU-MIMO) Wireless Local Area Networks (WLANs). Specifically, our MAC design is supported by the precoding vectors obtained by Zeroforcing technique which are used to address the Hidden Terminals. An efficient channel sounding process is used by our MAC protocol to obtain the Channel State Information (CSI) from the desired and undesired clients which are used to calculate the precoding vectors at the transmitters (Access Points). Our MAC design then uses these precoding vectors in order to null interferences among the undesired clients to avoid collision of signals and to maintain the concurrent transmissions among the desired clients. The the parameters such as network capacity, signaling overheads and fairness are considered in the design. Our MAC layer design shows a slightly higher signaling overhead compared to RTS/CTS scheme. However, due to the concurrent transmissions after the handshaking process, the cost of singling overheads are compensated. The simulation study of our MAC layer design shows a remarkable constant network capacity gain of 4-5 times in comparison to traditional RTS/CTS. Moreover, the gain is irrespective to the available air-time.