{"title":"The relative importance of energy resolution for quantitative /sup 99m/Tc SPECT imaging","authors":"J. Heanue, J.K. Brown, K. Kalki, B. Hasegawa","doi":"10.1109/NSSMIC.1995.500311","DOIUrl":null,"url":null,"abstract":"The authors seek to determine the desired energy resolution for quantitative SPECT imaging. As the energy resolution of the system is improved, the relative error due to scatter decreases. Yet, at some point the improvement becomes inconsequential since the scatter error is small compared to the other physical perturbations in the radionuclide measurement. In order to estimate the energy resolution at which this condition becomes true, the authors used a Monte Carlo code to simulate the emission data from a myocardial perfusion phantom. The data were reconstructed using a maximum likelihood code, and the images were analyzed to determine the relative effects of attenuation correction, collimator response compensation, noise, and scatter rejection on image quantitation. The simulations showed that improving the system energy resolution beyond 5 keV offers little benefit for myocardial perfusion studies. The relevance of this result to other applications is also discussed.","PeriodicalId":409998,"journal":{"name":"1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1995.500311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The authors seek to determine the desired energy resolution for quantitative SPECT imaging. As the energy resolution of the system is improved, the relative error due to scatter decreases. Yet, at some point the improvement becomes inconsequential since the scatter error is small compared to the other physical perturbations in the radionuclide measurement. In order to estimate the energy resolution at which this condition becomes true, the authors used a Monte Carlo code to simulate the emission data from a myocardial perfusion phantom. The data were reconstructed using a maximum likelihood code, and the images were analyzed to determine the relative effects of attenuation correction, collimator response compensation, noise, and scatter rejection on image quantitation. The simulations showed that improving the system energy resolution beyond 5 keV offers little benefit for myocardial perfusion studies. The relevance of this result to other applications is also discussed.