Load balanced clustering coefficients

PPAA '14 Pub Date : 2014-02-16 DOI:10.1145/2567634.2567635
Oded Green, Lluís-Miquel Munguía, David A. Bader
{"title":"Load balanced clustering coefficients","authors":"Oded Green, Lluís-Miquel Munguía, David A. Bader","doi":"10.1145/2567634.2567635","DOIUrl":null,"url":null,"abstract":"Clustering coefficients is a building block in network sciences that offers insights on how tightly bound vertices are in a network. Effective and scalable parallelization of clustering coefficients requires load balancing amongst the cores. This property is not easy to achieve since many real world networks are scale free, which leads to some vertices requiring more attention than others. In this work we show two scalable approaches that load balance clustering coefficients. The first method achieves optimal load balancing with an Ο(|E|) storage requirement. The second method has a lower storage requirement of Ο(|V|) at the cost of some imbalance. While both methods have a similar time complexity, they represent a tradeoff between maintaining a balanced workload and memory complexity. Using a 40-core system we show that our load balancing techniques outperform the widely used and simple parallel approach by a factor of 3X-7.5X for real graphs and 1.5X-4X for random graphs. Further, we achieve 25X-35X speedup over the sequential algorithm for most of the graphs.","PeriodicalId":379963,"journal":{"name":"PPAA '14","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAA '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2567634.2567635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Clustering coefficients is a building block in network sciences that offers insights on how tightly bound vertices are in a network. Effective and scalable parallelization of clustering coefficients requires load balancing amongst the cores. This property is not easy to achieve since many real world networks are scale free, which leads to some vertices requiring more attention than others. In this work we show two scalable approaches that load balance clustering coefficients. The first method achieves optimal load balancing with an Ο(|E|) storage requirement. The second method has a lower storage requirement of Ο(|V|) at the cost of some imbalance. While both methods have a similar time complexity, they represent a tradeoff between maintaining a balanced workload and memory complexity. Using a 40-core system we show that our load balancing techniques outperform the widely used and simple parallel approach by a factor of 3X-7.5X for real graphs and 1.5X-4X for random graphs. Further, we achieve 25X-35X speedup over the sequential algorithm for most of the graphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负载均衡聚类系数
聚类系数是网络科学中的一个构建块,它提供了对网络中绑定顶点的紧密程度的见解。集群系数的有效和可扩展的并行化需要在核心之间进行负载平衡。这个特性并不容易实现,因为许多现实世界的网络是无尺度的,这导致一些顶点需要比其他顶点更多的关注。在这项工作中,我们展示了两种可扩展的方法来负载平衡集群系数。第一种方法通过Ο(|E|)存储需求实现最佳负载平衡。第二种方法的存储需求较低,为Ο(|V|),但代价是存在一些不平衡。虽然这两种方法具有相似的时间复杂度,但它们代表了在维护平衡的工作负载和内存复杂性之间的权衡。通过使用一个40核系统,我们证明了我们的负载平衡技术比广泛使用的简单并行方法的性能要好,对于真实图是3x -7.5倍,对于随机图是1.5 - 4x倍。此外,对于大多数图,我们比顺序算法实现了25 -35倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cognitive computing journey Maximal clique enumeration for large graphs on hadoop framework High-speed graph analytics with the galois system Future directions in analytic applications Load balanced clustering coefficients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1