A Deep Learning framework for Ground Penetrating Radar

O. Patsia, A. Giannopoulos, I. Giannakis
{"title":"A Deep Learning framework for Ground Penetrating Radar","authors":"O. Patsia, A. Giannopoulos, I. Giannakis","doi":"10.1109/iwagpr50767.2021.9843168","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) is becoming a more frequently used approach to deal with GPR and other electromagnetic problems, which due to the complexity of the data, require new more complex solutions. We have developed an ML framework to provide solutions to specific GPR applications and scenarios. The ML tools utilize neural networks (NNs) and a large training set originating from simulations that include a digital twin of a real GPR transducer. The applications investigated are background removal, automatic estimation of the background bulk permittivity in conjunction with a reverse time migration (RTM) scheme that utilizes the ML outputs and is applied to reinforced concrete slab scenarios. The schemes are validated using both synthetic and real data, showing a very good accuracy and demonstrating the success of the ML algorithms. Although, this ML framework is applicable to certain applications and scenarios, it can be easily extended to other classes of problems.","PeriodicalId":170169,"journal":{"name":"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iwagpr50767.2021.9843168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machine learning (ML) is becoming a more frequently used approach to deal with GPR and other electromagnetic problems, which due to the complexity of the data, require new more complex solutions. We have developed an ML framework to provide solutions to specific GPR applications and scenarios. The ML tools utilize neural networks (NNs) and a large training set originating from simulations that include a digital twin of a real GPR transducer. The applications investigated are background removal, automatic estimation of the background bulk permittivity in conjunction with a reverse time migration (RTM) scheme that utilizes the ML outputs and is applied to reinforced concrete slab scenarios. The schemes are validated using both synthetic and real data, showing a very good accuracy and demonstrating the success of the ML algorithms. Although, this ML framework is applicable to certain applications and scenarios, it can be easily extended to other classes of problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探地雷达深度学习框架
机器学习(ML)正在成为处理GPR和其他电磁问题的一种更常用的方法,由于数据的复杂性,这些问题需要新的更复杂的解决方案。我们已经开发了一个ML框架,为特定的GPR应用和场景提供解决方案。机器学习工具利用神经网络(nn)和源自模拟的大型训练集,其中包括真实GPR换能器的数字双胞胎。研究的应用包括背景去除、背景体介电常数的自动估计以及利用ML输出的逆时迁移(RTM)方案,该方案应用于钢筋混凝土板场景。利用合成数据和实际数据对方案进行了验证,显示出非常好的准确性,证明了机器学习算法的成功。虽然这个ML框架适用于某些应用程序和场景,但它可以很容易地扩展到其他类型的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing Adam and SGD optimizers to train AlexNet for classifying GPR C-scans featuring ancient structures Polarimetric Alpha Angle versus Relative Permittivity with Dual-Polarimetric GPR Experiments GPR Monitoring at the Crypt of Sant’Agnese in Agone Church, Rome, Italy Evaluation of the possibility of using the radio frequency range for the survey of the Great Pyramid Full Waveform Inversion of common offset GPR data using a fast deep learning based forward solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1