Research of key technology about column store to row store in multi-source heterogeneous database

Aiping Xu, Di Wu, Wuping Xu
{"title":"Research of key technology about column store to row store in multi-source heterogeneous database","authors":"Aiping Xu, Di Wu, Wuping Xu","doi":"10.1109/FSKD.2016.7603217","DOIUrl":null,"url":null,"abstract":"Although at present a lot of big data use the ways of column store, traditional row store is still the mainstream storage way of relational database management system. There is no universal transformation tool facing of the requirements which column stored be transform into row store in heterogeneous database integration systems. The transpose mapping table of column store to row store, data extraction process based on this mapping table, corresponding transposing algorithm are researched and the effectiveness of these key technologies are verified through examples and implementation in this paper. This result is suitable to data extraction from column store to row store for different source table to destination table. Any prerequisites need not be set to the table structure and the type of database of source table and destination table in this research. Therefore, this result possess good generality and compatibility to heterogeneous data sources.","PeriodicalId":373155,"journal":{"name":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2016.7603217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although at present a lot of big data use the ways of column store, traditional row store is still the mainstream storage way of relational database management system. There is no universal transformation tool facing of the requirements which column stored be transform into row store in heterogeneous database integration systems. The transpose mapping table of column store to row store, data extraction process based on this mapping table, corresponding transposing algorithm are researched and the effectiveness of these key technologies are verified through examples and implementation in this paper. This result is suitable to data extraction from column store to row store for different source table to destination table. Any prerequisites need not be set to the table structure and the type of database of source table and destination table in this research. Therefore, this result possess good generality and compatibility to heterogeneous data sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多源异构数据库中列存储到行存储的关键技术研究
虽然目前大量的大数据采用列存储的方式,但是传统的行存储仍然是关系数据库管理系统的主流存储方式。在异构数据库集成系统中,面对将列存储转换为行存储的需求,没有通用的转换工具。本文研究了列存储到行存储的转置映射表、基于该映射表的数据提取过程、相应的转置算法,并通过实例和实现验证了这些关键技术的有效性。此结果适用于从列存储到行存储的不同源表到目标表的数据提取。本研究不需要对源表和目的表的表结构和数据库类型设置任何先决条件。因此,该结果对异构数据源具有良好的通用性和兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel electrons drifting algorithm for non-linear optimization problems Performance assessment of fault classifier of chemical plant based on support vector machine A theoretical line losses calculation method of distribution system based on boosting algorithm Building vietnamese dependency treebank based on Chinese-Vietnamese bilingual word alignment Optimizing self-adaptive gender ratio of elephant search algorithm by min-max strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1