Intelligent current controller for an HVDC transmission link

K. Narendra, K. Khorasani, V. Sood, R. Patel
{"title":"Intelligent current controller for an HVDC transmission link","authors":"K. Narendra, K. Khorasani, V. Sood, R. Patel","doi":"10.1109/PICA.1997.599379","DOIUrl":null,"url":null,"abstract":"This paper describes an intelligent current controller for the fast and flexible control of an HVDC transmission link using artificial neural network (ANN) and fuzzy logic (FL) paradigms. A simple yet effective ANN architecture is presented with online adaptation of the activation function and learning parameters. Two methods of adapting the learning parameters are presented. In the first method, a heuristic approach to evaluate the learning rate as a polynomial of an energy function is considered. In the second method, a FL based online adaptation of the learning parameters is discussed. Performance of ANN, ANN-FL based and PI controllers are compared. A feasibility analysis is carried out to implement the proposed neural controller algorithm in real-time.","PeriodicalId":383749,"journal":{"name":"Proceedings of the 20th International Conference on Power Industry Computer Applications","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Power Industry Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1997.599379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper describes an intelligent current controller for the fast and flexible control of an HVDC transmission link using artificial neural network (ANN) and fuzzy logic (FL) paradigms. A simple yet effective ANN architecture is presented with online adaptation of the activation function and learning parameters. Two methods of adapting the learning parameters are presented. In the first method, a heuristic approach to evaluate the learning rate as a polynomial of an energy function is considered. In the second method, a FL based online adaptation of the learning parameters is discussed. Performance of ANN, ANN-FL based and PI controllers are compared. A feasibility analysis is carried out to implement the proposed neural controller algorithm in real-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高压直流输电链路的智能电流控制器
本文介绍了一种采用人工神经网络(ANN)和模糊逻辑(FL)方法对高压直流输电链路进行快速、灵活控制的智能电流控制器。提出了一种简单有效的神经网络结构,通过在线自适应激活函数和学习参数。提出了两种自适应学习参数的方法。在第一种方法中,考虑了用能量函数的多项式来评估学习率的启发式方法。在第二种方法中,讨论了基于FL的学习参数在线自适应。比较了神经网络控制器、基于神经网络fl控制器和PI控制器的性能。对所提出的神经控制器算法进行了实时实现的可行性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimization-based framework for the quick analysis of power transactions Decision Aid Function for Restoration of transmission power systems: conceptual design and real time considerations A new digital filter for phasor computation. II. Evaluation Generalized observability analysis and measurement classification Generalized state estimation [power systems]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1