Donghyun Lee, Hosung Park, Minkyu Lim, Ji-Hwan Kim
{"title":"Syllable-Level Long Short-Term Memory Recurrent Neural Network-based Language Model for Korean Voice Interface in Intelligent Personal Assistants","authors":"Donghyun Lee, Hosung Park, Minkyu Lim, Ji-Hwan Kim","doi":"10.1109/GCCE46687.2019.9015213","DOIUrl":null,"url":null,"abstract":"This study proposes a syllable-level long short-term memory (LSTM) recurrent neural network (RNN)-based language model for a Korean voice interface in intelligent personal assistants (IPAs). Most Korean voice interfaces in IPAs use word-level $n$ -gram language models. Such models suffer from the following two problems: 1) the syntax information in a longer word history is limited because of the limitation of $n$ and 2) The out-of-vocabulary (OOV) problem can occur in a word-based vocabulary. To solve the first problem, the proposed model uses an LSTM RNN-based language model because an LSTM RNN provides long-term dependency information. To solve the second problem, the proposed model is trained with a syllable-level text corpus. Korean words comprise syllables, and therefore, OOV words are not presented in a syllable-based lexicon. In experiments, the RNN-based language model and the proposed model achieved perplexity (PPL) of 68.74 and 17.81, respectively.","PeriodicalId":303502,"journal":{"name":"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE46687.2019.9015213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This study proposes a syllable-level long short-term memory (LSTM) recurrent neural network (RNN)-based language model for a Korean voice interface in intelligent personal assistants (IPAs). Most Korean voice interfaces in IPAs use word-level $n$ -gram language models. Such models suffer from the following two problems: 1) the syntax information in a longer word history is limited because of the limitation of $n$ and 2) The out-of-vocabulary (OOV) problem can occur in a word-based vocabulary. To solve the first problem, the proposed model uses an LSTM RNN-based language model because an LSTM RNN provides long-term dependency information. To solve the second problem, the proposed model is trained with a syllable-level text corpus. Korean words comprise syllables, and therefore, OOV words are not presented in a syllable-based lexicon. In experiments, the RNN-based language model and the proposed model achieved perplexity (PPL) of 68.74 and 17.81, respectively.