Combining Core-Shell Construction with Alloying Effect for High Efficiency Ethanol Electrooxidation: A Case of Core-Shell Au@Fepd Nanoparticles with Sub-Nano Alloy Shells

Danye Liu, Qing Zeng, Hui Liu, Chaoquan Hu, Dong Chen, Lin Xu, Jun Yang
{"title":"Combining Core-Shell Construction with Alloying Effect for High Efficiency Ethanol Electrooxidation: A Case of Core-Shell Au@Fepd Nanoparticles with Sub-Nano Alloy Shells","authors":"Danye Liu, Qing Zeng, Hui Liu, Chaoquan Hu, Dong Chen, Lin Xu, Jun Yang","doi":"10.2139/ssrn.3756486","DOIUrl":null,"url":null,"abstract":"Combining the core-shell construction with an alloying effect is an effective way to optimize the electronic and lattice strain effects generated in core-shell configurations for achieving highly catalytic efficiency for a given electrochemical reaction. To demonstrate this concept, we herein report the use of core-shell Au@FePd nanoparticles with an Au core and a sub-nano FePd alloy shell to promote the electrocatalytic oxidation of ethanol. In these core-shell structures, the Au core modifies the electronic configuration of Pd atoms through differences in electronegativity, while the Fe component in thin shells reduces the lattice expansion of Pd induced by the Au core, both of which endows the Pd shell with an appropriate d-band center, favorable for the electrooxidation of ethanol molecules through C1 pathway. In particular, the as-prepared core-shell Au@FePd nanoparticles at an optimized Fe/Pd ratio of 0.5/1 (Au@FePd-0.5) exhibit a mass activity of 13.3 A mg-1 and a specific activity of 20.2 mA cm-2 for the ethanol electrooxidation in an alkaline medium, which significantly outperform those of a majority of the recent reported Pd-based electrocatalysts. This study highlights the concept of engineering the geometry and surface composition of a nanostructure for designing highly efficient electrocatalysts for a large variety of electrochemical applications.","PeriodicalId":119595,"journal":{"name":"Nanomaterials eJournal","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3756486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Combining the core-shell construction with an alloying effect is an effective way to optimize the electronic and lattice strain effects generated in core-shell configurations for achieving highly catalytic efficiency for a given electrochemical reaction. To demonstrate this concept, we herein report the use of core-shell Au@FePd nanoparticles with an Au core and a sub-nano FePd alloy shell to promote the electrocatalytic oxidation of ethanol. In these core-shell structures, the Au core modifies the electronic configuration of Pd atoms through differences in electronegativity, while the Fe component in thin shells reduces the lattice expansion of Pd induced by the Au core, both of which endows the Pd shell with an appropriate d-band center, favorable for the electrooxidation of ethanol molecules through C1 pathway. In particular, the as-prepared core-shell Au@FePd nanoparticles at an optimized Fe/Pd ratio of 0.5/1 (Au@FePd-0.5) exhibit a mass activity of 13.3 A mg-1 and a specific activity of 20.2 mA cm-2 for the ethanol electrooxidation in an alkaline medium, which significantly outperform those of a majority of the recent reported Pd-based electrocatalysts. This study highlights the concept of engineering the geometry and surface composition of a nanostructure for designing highly efficient electrocatalysts for a large variety of electrochemical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合核-壳结构和合金化效应的高效乙醇电氧化:核-壳纳米粒子Au@Fepd与亚纳米合金壳的案例
结合核壳结构和合金效应是优化核壳结构中产生的电子和晶格应变效应的有效途径,从而实现对给定电化学反应的高催化效率。为了证明这一概念,我们在此报道了使用具有金核和亚纳米FePd合金壳的核壳Au@FePd纳米颗粒来促进乙醇的电催化氧化。在这些核壳结构中,Au核通过电负性的差异改变了Pd原子的电子构型,而薄壳层中的Fe组分降低了Au核诱导Pd的晶格膨胀,这两者都使Pd壳层具有合适的d带中心,有利于乙醇分子通过C1途径电氧化。特别是,在Fe/Pd比为0.5/1 (Au@FePd-0.5)的优化条件下,制备的核壳Au@FePd纳米颗粒在碱性介质中乙醇电氧化的质量活性为13.3 a mg-1,比活性为20.2 mA cm-2,显著优于最近报道的大多数Pd基电催化剂。这项研究强调了工程纳米结构的几何和表面组成的概念,以设计各种电化学应用的高效电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guiding Graphene Derivatization for Covalent Immobilization of Aptamers Restoring Carboxylates on Highly Modified Alginates Improves Gelation, Tissue Retention and Systemic Capture Core-Shell Lipoplexes Inducing Active Macropinocytosis Promote Intranasal Delivery of c-Myc siRNA for Treatment of Glioblastoma Controlled Bimatoprost Release from Graphene Oxide Laden Contact Lenses: In vitro and in vivo Studies An Intelligent Responsive Macrophage Cell Membrane Camouflaged Mesoporous Silicon Nanorods Drug Delivery System for Precise Targeted Therapy Of Tumor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1