Contrasting False Identities in Social Networks by Trust Chains and Biometric Reinforcement

F. Buccafurri, G. Lax, Denis Migdal, S. Nicolazzo, Antonino Nocera, C. Rosenberger
{"title":"Contrasting False Identities in Social Networks by Trust Chains and Biometric Reinforcement","authors":"F. Buccafurri, G. Lax, Denis Migdal, S. Nicolazzo, Antonino Nocera, C. Rosenberger","doi":"10.1109/CW.2017.42","DOIUrl":null,"url":null,"abstract":"Fake identities and identity theft are issues whose relevance is increasing in the social network domain. This paper deals with this problem by proposing an innovative approach which combines a collaborative mechanism implementing a trust graph with keystroke-dynamic-recognition techniques to trust identities. The trust of each node is computed on the basis of neighborhood recognition and behavioral biometric support. The model leverages the word of mouth propagation and a settable degree of redundancy to obtain robustness. Experimental results show the benefit of the proposed solution even if attack nodes are present in the social network.","PeriodicalId":309728,"journal":{"name":"2017 International Conference on Cyberworlds (CW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2017.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Fake identities and identity theft are issues whose relevance is increasing in the social network domain. This paper deals with this problem by proposing an innovative approach which combines a collaborative mechanism implementing a trust graph with keystroke-dynamic-recognition techniques to trust identities. The trust of each node is computed on the basis of neighborhood recognition and behavioral biometric support. The model leverages the word of mouth propagation and a settable degree of redundancy to obtain robustness. Experimental results show the benefit of the proposed solution even if attack nodes are present in the social network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过信任链和生物特征强化对比社会网络中的虚假身份
虚假身份和身份盗窃是社交网络领域日益突出的问题。针对这一问题,本文提出了一种创新的方法,将实现信任图的协作机制与按键动态识别技术相结合来实现身份的信任。基于邻域识别和行为生物特征支持计算每个节点的信任度。该模型利用口碑传播和可设置的冗余度来获得鲁棒性。实验结果表明,即使攻击节点存在于社交网络中,所提出的解决方案也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Audio Models for Virtual Reality Video Humans as Avatars in Smart and Playable Cities Traversing Social Networks in the Virtual Dance Hall: Visualizing History in VR Artificial Folklore for Simulated Religions A Time-Line Approach for the Generation of Simulated Settlements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1