Simulation of Homogenous Fish Schools in the Presence of Food and Predators using Reinforcement Learning

Ravipas Wangananont, Norapat Buppodom, Sanpat Chanthanuraks, Vishnu Kotrajaras
{"title":"Simulation of Homogenous Fish Schools in the Presence of Food and Predators using Reinforcement Learning","authors":"Ravipas Wangananont, Norapat Buppodom, Sanpat Chanthanuraks, Vishnu Kotrajaras","doi":"10.1109/iSAI-NLP56921.2022.9960278","DOIUrl":null,"url":null,"abstract":"We utilized Deep Reinforcement Learning to incor-porate schooling, foraging, and predator avoidance behaviors into a single fish behavior model. We used Proximal Policy Optimization (PPO) with Intrinsic Curiosity Reward (ICR) to make fish agents learn in our Unity Environment. We created an interactive control system on Unity that allows users to visualize and manipulate the simulation using only a mouse and keyboard. We compared our model with three variations: one without schooling reward, one without foraging reward, and one without predator avoidance reward. Our original model (schooling, foraging, and predator avoidance) clearly illustrated the unification of all three behaviors.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We utilized Deep Reinforcement Learning to incor-porate schooling, foraging, and predator avoidance behaviors into a single fish behavior model. We used Proximal Policy Optimization (PPO) with Intrinsic Curiosity Reward (ICR) to make fish agents learn in our Unity Environment. We created an interactive control system on Unity that allows users to visualize and manipulate the simulation using only a mouse and keyboard. We compared our model with three variations: one without schooling reward, one without foraging reward, and one without predator avoidance reward. Our original model (schooling, foraging, and predator avoidance) clearly illustrated the unification of all three behaviors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用强化学习模拟食物和捕食者存在下的同质鱼群
我们利用深度强化学习将鱼群、觅食和捕食者躲避行为整合到一个单一的鱼类行为模型中。我们使用带有内在好奇心奖励(ICR)的近端策略优化(PPO)来使鱼代理在Unity环境中学习。我们在Unity上创建了一个交互式控制系统,允许用户仅使用鼠标和键盘就可以可视化和操纵模拟。我们将我们的模型与三种变体进行了比较:一种没有学校奖励,一种没有觅食奖励,还有一种没有捕食者躲避奖励。我们最初的模型(学习、觅食和躲避捕食者)清楚地说明了这三种行为的统一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Interviewer's Presentation Styles for Interview Practice with a Communicative Robot An Analysis of Acoustic Features for Attention Score in Thai MoCA Assessment Convolutional Time Delay Neural Network for Khmer Automatic Speech Recognition ThEconSum: an Economics-domained Dataset for Thai Text Summarization and Baseline Models Using the MQTT Broker as a Speech-Activated Medium to Control the Operation of Devices in the Smart Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1