Random parameter variation in analog VLSI neural networks for linear image filtering

Bertram E. Shi, T. Roska, L. Chua
{"title":"Random parameter variation in analog VLSI neural networks for linear image filtering","authors":"Bertram E. Shi, T. Roska, L. Chua","doi":"10.1109/ICNN.1994.374453","DOIUrl":null,"url":null,"abstract":"This paper introduces an analytic method to determine the sensitivity to random parameter variations of analog VLSI neural network architectures for linear image filtering. The authors compare the robustness of several different circuit architectures for low pass filtering. This method can also determine which components within a particular architecture should specified the most precisely.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"10 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper introduces an analytic method to determine the sensitivity to random parameter variations of analog VLSI neural network architectures for linear image filtering. The authors compare the robustness of several different circuit architectures for low pass filtering. This method can also determine which components within a particular architecture should specified the most precisely.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性图像滤波中模拟VLSI神经网络的随机参数变化
本文介绍了一种分析方法来确定用于线性图像滤波的模拟VLSI神经网络结构对随机参数变化的灵敏度。作者比较了几种不同的电路结构对低通滤波的鲁棒性。此方法还可以确定应该最精确地指定特定体系结构中的哪些组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1