Three-Dimensional Trajectory Design for Multi-User MISO UAV Communications: A Deep Reinforcement Learning Approach

Yang Wang, Zhen Gao
{"title":"Three-Dimensional Trajectory Design for Multi-User MISO UAV Communications: A Deep Reinforcement Learning Approach","authors":"Yang Wang, Zhen Gao","doi":"10.1109/iccc52777.2021.9580401","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a multi-user downlink multiple-input single-output (MISO) unmanned aerial vehicle (UAV) communication system, where a multi-antenna UAV is employed to serve multiple ground terminals. Unlike existing approaches focus only on a simplified two-dimensional scenario, this paper considers a three-dimensional (3D) urban environment, where the UAV's 3D trajectory is designed to minimize data transmission completion time subject to practical throughput and flight movement constraints. Specifically, we propose a deep reinforcement learning (DRL)-based trajectory design for completion time minimization (DRL- TDCTM), which is developed from a deep deterministic policy gradient algorithm. In particular, to represent the state information of UAV and environment, we set an additional information, i.e., the merged pheromone, as a reference of reward which facilitates the algorithm design. By interacting with the external environment in the corresponding Markov decision process, the proposed algorithm can continuously and adaptively learn how to adjust the UAV's movement strategy. Finally, simulation results show the superiority of the proposed DRL- TDCTM algorithm over the conventional baseline methods.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we investigate a multi-user downlink multiple-input single-output (MISO) unmanned aerial vehicle (UAV) communication system, where a multi-antenna UAV is employed to serve multiple ground terminals. Unlike existing approaches focus only on a simplified two-dimensional scenario, this paper considers a three-dimensional (3D) urban environment, where the UAV's 3D trajectory is designed to minimize data transmission completion time subject to practical throughput and flight movement constraints. Specifically, we propose a deep reinforcement learning (DRL)-based trajectory design for completion time minimization (DRL- TDCTM), which is developed from a deep deterministic policy gradient algorithm. In particular, to represent the state information of UAV and environment, we set an additional information, i.e., the merged pheromone, as a reference of reward which facilitates the algorithm design. By interacting with the external environment in the corresponding Markov decision process, the proposed algorithm can continuously and adaptively learn how to adjust the UAV's movement strategy. Finally, simulation results show the superiority of the proposed DRL- TDCTM algorithm over the conventional baseline methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多用户MISO无人机通信三维轨迹设计:一种深度强化学习方法
本文研究了一种多用户下行链路多输入单输出(MISO)无人机通信系统,该系统采用多天线无人机为多个地面终端提供服务。与现有方法只关注简化的二维场景不同,本文考虑了三维(3D)城市环境,其中无人机的3D轨迹被设计为在实际吞吐量和飞行运动约束下最小化数据传输完成时间。具体来说,我们提出了一种基于深度强化学习(DRL)的完成时间最小化轨迹设计(DRL- TDCTM),它是由深度确定性策略梯度算法发展而来的。特别地,为了表示无人机和环境的状态信息,我们设置了一个附加信息,即合并后的信息素作为奖励参考,方便了算法设计。该算法通过在相应的马尔可夫决策过程中与外部环境相互作用,能够持续自适应地学习如何调整无人机的运动策略。最后,仿真结果表明了所提出的DRL- TDCTM算法相对于传统基线方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group-oriented Handover Authentication Scheme in MEC-Enabled 5G Networks Joint Task Secure Offloading and Resource Allocation for Multi-MEC Server to Improve User QoE Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems Predictive Beam Tracking with Cooperative Sensing for Vehicle-to-Infrastructure Communications Age-aware Communication Strategy in Federated Learning with Energy Harvesting Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1