THz transmission through cross metallic fractal slits by FDTD simulation

Xiaoyan Wang, Liming Liu, Guozhong Zhao, Cunlin Zhang
{"title":"THz transmission through cross metallic fractal slits by FDTD simulation","authors":"Xiaoyan Wang, Liming Liu, Guozhong Zhao, Cunlin Zhang","doi":"10.1117/12.900492","DOIUrl":null,"url":null,"abstract":"The transmission spectra of sub-wavelength cross metallic fractal slits in terahertz (THz) frequency region are presented by means of finite-difference-time-domain (FDTD) simulation. The transmission spectra with multiple pass bands and stop bands are observed. To understand the physical mechanism of the enhanced transmissions, we simulated the electric field distribution of THz radiation within the metallic slits at the resonance frequencies by the electromagnetic design software named CONCERTO. Further analysis reveals that the two transmission peaks in the low frequency is the local resonance of electric field of the two cross slit, respectively. The third transmission peak is the co-effect of the two level cross slits. Our simulation is helpful for the understanding of THz wave propagation and THz transmission through the cross metallic fractal structures. It is also useful for the development of THz photonic devices.","PeriodicalId":355017,"journal":{"name":"Photoelectronic Detection and Imaging","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoelectronic Detection and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.900492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The transmission spectra of sub-wavelength cross metallic fractal slits in terahertz (THz) frequency region are presented by means of finite-difference-time-domain (FDTD) simulation. The transmission spectra with multiple pass bands and stop bands are observed. To understand the physical mechanism of the enhanced transmissions, we simulated the electric field distribution of THz radiation within the metallic slits at the resonance frequencies by the electromagnetic design software named CONCERTO. Further analysis reveals that the two transmission peaks in the low frequency is the local resonance of electric field of the two cross slit, respectively. The third transmission peak is the co-effect of the two level cross slits. Our simulation is helpful for the understanding of THz wave propagation and THz transmission through the cross metallic fractal structures. It is also useful for the development of THz photonic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属分形缝中太赫兹传输的时域有限差分模拟
采用时域有限差分(FDTD)仿真方法,得到了亚波长金属分形缝隙在太赫兹(THz)频段的透射光谱。观测到具有多个通带和阻带的透射光谱。为了了解这种增强传输的物理机制,我们利用电磁设计软件CONCERTO模拟了谐振频率下金属狭缝内太赫兹辐射的电场分布。进一步分析表明,低频处的两个透射峰分别是两个交叉缝电场的局部共振。第三个传输峰是两级交叉狭缝的共同效应。我们的模拟有助于理解太赫兹波在金属交叉分形结构中的传播和传输。这对太赫兹光子器件的发展也有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and characterization of radiation tolerant CMOS image sensor for space applications Measuring the steel tensile deformation based on linear CCD 3D hand and palmprint acquisition using full-field composite color fringe projection Research on surface free energy of electrowetting liquid zoom lens Research on inside surface of hollow reactor based on photoelectric detecting technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1