Comparing Autonomic Physiological and Electroencephalography Features for VR Sickness Detection Using Predictive Models

Gang Li, Ogechi Onuoha, Mark Mcgill, S. Brewster, C. Chen, F. Pollick
{"title":"Comparing Autonomic Physiological and Electroencephalography Features for VR Sickness Detection Using Predictive Models","authors":"Gang Li, Ogechi Onuoha, Mark Mcgill, S. Brewster, C. Chen, F. Pollick","doi":"10.1109/SSCI50451.2021.9660126","DOIUrl":null,"url":null,"abstract":"How the performance of autonomic physiological, and human vestibular network (HVN)-based brain functional connectivity (BFC) features differ in a virtual reality (VR) sickness classification task is underexplored. Therefore, this paper presents an artificial intelligence (AI)-aided comparative study of the two. Results from different AI models all show that autonomic physiological features represented by the combined heart rate, fingertip temperature and forehead temperature are superior to HVN-based BFC features represented by the phase-locking values of inter-electrode coherence (IEC) of electroencephalogram (EEG) in the same VR sickness condition (that is, as a result of experiencing tunnel travel-induced illusory self-motion (vection) about moving in-depth in this study). Regarding EEG features per se (IEC-BFC vs traditional power spectrum), we did not find much difference across AI models.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

How the performance of autonomic physiological, and human vestibular network (HVN)-based brain functional connectivity (BFC) features differ in a virtual reality (VR) sickness classification task is underexplored. Therefore, this paper presents an artificial intelligence (AI)-aided comparative study of the two. Results from different AI models all show that autonomic physiological features represented by the combined heart rate, fingertip temperature and forehead temperature are superior to HVN-based BFC features represented by the phase-locking values of inter-electrode coherence (IEC) of electroencephalogram (EEG) in the same VR sickness condition (that is, as a result of experiencing tunnel travel-induced illusory self-motion (vection) about moving in-depth in this study). Regarding EEG features per se (IEC-BFC vs traditional power spectrum), we did not find much difference across AI models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用预测模型比较VR疾病检测的自主生理学和脑电图特征
自主神经生理和基于人类前庭网络(HVN)的脑功能连接(BFC)特征在虚拟现实(VR)疾病分类任务中的表现差异尚不清楚。因此,本文在人工智能(AI)的辅助下对两者进行了比较研究。不同AI模型的结果均表明,在相同的VR疾病状态下(即本研究中由于经历了隧道旅行引起的关于深度移动的虚幻自我运动(vection)),以心率、指尖温度和前额温度组合为代表的自主生理特征优于以脑电图(EEG)电极间相干(IEC)锁相值为代表的基于hvr的BFC特征。关于EEG特征本身(IEC-BFC与传统功率谱),我们没有发现人工智能模型之间有太大差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1