{"title":"Improved quantum secret sharing scheme based on GHZ states","authors":"Mingming Wang, Zhiguo Qu, Lin-Ming Gong","doi":"10.1504/ijcse.2020.10027617","DOIUrl":null,"url":null,"abstract":"With the rapid progress of quantum cryptography, secret sharing has been developed in the quantum setting for achieving a high level of security, which is known as quantum secret sharing (QSS). The first QSS scheme was proposed by Hillery et al. in 1999 [Phys. Rev. A, Vol. 59, p.1829 (1999)] based on entangled Greenberger-Horne-Zeilinger (GHZ) states. However, only 50% of the entangled quantum states are effective for eavesdropping detection and secret splitting in the original scheme. In this paper, we introduce a possible method, called measurement-delay strategy, to improve the qubit efficiency of the GHZ-based QSS scheme. By using this method, the qubit efficiency of the improved QSS scheme can reach 100% for both security detection and secret distribution. The improved QSS scheme can be implemented experimentally based on current technologies.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10027617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
With the rapid progress of quantum cryptography, secret sharing has been developed in the quantum setting for achieving a high level of security, which is known as quantum secret sharing (QSS). The first QSS scheme was proposed by Hillery et al. in 1999 [Phys. Rev. A, Vol. 59, p.1829 (1999)] based on entangled Greenberger-Horne-Zeilinger (GHZ) states. However, only 50% of the entangled quantum states are effective for eavesdropping detection and secret splitting in the original scheme. In this paper, we introduce a possible method, called measurement-delay strategy, to improve the qubit efficiency of the GHZ-based QSS scheme. By using this method, the qubit efficiency of the improved QSS scheme can reach 100% for both security detection and secret distribution. The improved QSS scheme can be implemented experimentally based on current technologies.