Electricity Usage Clustering with K-means++ Algorithm

Muchammad Dicky Sanjaya, C. Setianingsih, R. E. Saputra
{"title":"Electricity Usage Clustering with K-means++ Algorithm","authors":"Muchammad Dicky Sanjaya, C. Setianingsih, R. E. Saputra","doi":"10.1109/IAICT52856.2021.9532534","DOIUrl":null,"url":null,"abstract":"Global electricity consumption is increasing every year. Electricity has become a necessary need for every sector, from a household to government and industry. With today's technology, data also has become more important, including electricity data. The right tools and techniques can extract valuable information from data. Using a K-Means++ algorithm to cluster electricity data can help to determine when the usage is low, moderate, and high. In this study, there three scenarios of clustering; hourly, daily, and monthly. The silhouette score of this experiment ranges from 0.68 to 0.71, and the DB Index ranges from 0.30 to 0.51.","PeriodicalId":416542,"journal":{"name":"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT52856.2021.9532534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global electricity consumption is increasing every year. Electricity has become a necessary need for every sector, from a household to government and industry. With today's technology, data also has become more important, including electricity data. The right tools and techniques can extract valuable information from data. Using a K-Means++ algorithm to cluster electricity data can help to determine when the usage is low, moderate, and high. In this study, there three scenarios of clustering; hourly, daily, and monthly. The silhouette score of this experiment ranges from 0.68 to 0.71, and the DB Index ranges from 0.30 to 0.51.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k -means++算法的用电量聚类
全球用电量每年都在增加。从家庭到政府和工业,电力已经成为每个部门的必要需求。随着今天的技术,数据也变得越来越重要,包括电力数据。正确的工具和技术可以从数据中提取有价值的信息。使用k - means++算法对电力数据进行聚类可以帮助确定用电量低、中等和高的时间段。在本研究中,聚类有三种场景;每小时、每天和每月。本实验的廓形评分范围为0.68 ~ 0.71,DB指数范围为0.30 ~ 0.51。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wi-Fi CSI Based Human Sign Language Recognition using LSTM Network Effect of Antenna Power Roll-Off on Performance and Coverage of 4G Cellular Network from High Altitude Platforms Virtual Reality Experience in Tourism: A Factor Analysis Assessment Design of Integrated Control System Based On IoT With Context Aware Method In Hydroponic Plants Stability Control for Bipedal Robot in Standing and Walking using Fuzzy Logic Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1