Quantitative Association Rules Mining Method Based on Trapezium Cloud Model

Zhao-hong Wang
{"title":"Quantitative Association Rules Mining Method Based on Trapezium Cloud Model","authors":"Zhao-hong Wang","doi":"10.1109/DBTA.2010.5658963","DOIUrl":null,"url":null,"abstract":"The quantitative association rules mining method is difficult for their values are too large. The usual means is dividing quantitative Data to discrete conception. The trapezium Cloud model combines ambiguity and randomness organically to fit the real world objectively, divide quantitative Data with trapezium Cloud model to create concepts, the concept cluster within one class, and separated with each other. So the quantitative Data can be transforms to Boolean data well, the Boolean data can be mined by the mature Boolean association rules mining method.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5658963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quantitative association rules mining method is difficult for their values are too large. The usual means is dividing quantitative Data to discrete conception. The trapezium Cloud model combines ambiguity and randomness organically to fit the real world objectively, divide quantitative Data with trapezium Cloud model to create concepts, the concept cluster within one class, and separated with each other. So the quantitative Data can be transforms to Boolean data well, the Boolean data can be mined by the mature Boolean association rules mining method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于梯形云模型的定量关联规则挖掘方法
定量关联规则挖掘方法由于其数值太大而存在困难。通常的方法是将定量数据划分为离散的概念。梯形云模型将模糊性和随机性有机地结合起来,客观地拟合现实世界,用梯形云模型对定量数据进行划分,产生概念,概念聚类在一类内,又相互分离。因此,定量数据可以很好地转换为布尔数据,布尔数据可以通过成熟的布尔关联规则挖掘方法进行挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SRJA: Iceberg Join Processing in Wireless Sensor Networks A New Method of Selecting Pivot Features for Structural Correspondence Learning in Domain Adaptive Sentiment Analysis Apply of Data Ming Technology in CRM A New Like Fibonacci Sequence and Its Properties Multisensor Estimation Fusion for Wireless Networks with Mixed Data Delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1