Small sample properties of the RSS estimation algorithm for Gaussian measurement noise

C. S. Agate, R. Iltis
{"title":"Small sample properties of the RSS estimation algorithm for Gaussian measurement noise","authors":"C. S. Agate, R. Iltis","doi":"10.1109/ACSSC.1997.679183","DOIUrl":null,"url":null,"abstract":"The statistics of the reduced sufficient statistics (RSS) estimator are derived for the nonlinear additive white Gaussian noise measurement model. The RSS algorithm recursively propagates a set of sufficient statistics for a mixture density which approximates the true posterior density of a parameter vector. The joint probability density function for the weighting coefficients of the mixture density is derived for the case of additive white Gaussian noise. Through integration of this density, the estimator bias and mean-squared error are determined. The results are applied to a scalar estimation problem in which the sample-averaged statistics are compared to those derived from numerical integration of the density function.","PeriodicalId":240431,"journal":{"name":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1997.679183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The statistics of the reduced sufficient statistics (RSS) estimator are derived for the nonlinear additive white Gaussian noise measurement model. The RSS algorithm recursively propagates a set of sufficient statistics for a mixture density which approximates the true posterior density of a parameter vector. The joint probability density function for the weighting coefficients of the mixture density is derived for the case of additive white Gaussian noise. Through integration of this density, the estimator bias and mean-squared error are determined. The results are applied to a scalar estimation problem in which the sample-averaged statistics are compared to those derived from numerical integration of the density function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小样本特性的RSS估计算法用于高斯测量噪声
针对非线性加性高斯白噪声测量模型,导出了简化充分统计量估计量的统计量。RSS算法递归地传播一组足够的统计量,用于接近参数向量的真实后验密度的混合密度。在加性高斯白噪声的情况下,导出了混合密度加权系数的联合概率密度函数。通过对该密度的积分,确定了估计器偏差和均方误差。结果应用于标量估计问题,其中样本平均统计量与密度函数的数值积分统计量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative study of multiple accessing schemes Self-affine modeling of speech signal in speech compression A progressive transmission image coder using linear phase paraunitary filter banks A canonical representation for distributions of adaptive matched subspace detectors Finite length equalization for FFT-based multicarrier systems-an error-whitening viewpoint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1