REVIEW ARTICLE: ENERGY SAVING AND EFFICIENCY METHODS IN PETROCHEMICAL INDUSTRY

D. H. K. Triaji
{"title":"REVIEW ARTICLE: ENERGY SAVING AND EFFICIENCY METHODS IN PETROCHEMICAL INDUSTRY","authors":"D. H. K. Triaji","doi":"10.25105/PETRO.V10I1.8582","DOIUrl":null,"url":null,"abstract":"Energy Saving and Efficiency Methods in the Petrochemical Industry are indispensable for the petroleum industry. Energy saving and efficiency is now recognized as the most important goal worldwide. Therefore, it is currently common to combine traditional mechanism methods based on momentum transport, energy transport, quality transport (TT) and reaction engineering (RG) (TT-RG), with data-driven artificial intelligence methods. The aim is to achieve production optimization and energy savings. By streamlining and saving energy in the petrochemical industry, we can take petroleum and petrochemicals in a more advanced and efficient direction. The methods that can be used are AP based mechanism method, TT-RG, data-based artificial intelligence method, and hybrid method which combines mechanism and data-driven. For the most appropriate method, we can choose according to our needs by weighing the advantages and disadvantages of each method. Finally, the future development direction for energy efficiency evaluation in complex petrochemical industries is given.","PeriodicalId":435945,"journal":{"name":"PETRO:Jurnal Ilmiah Teknik Perminyakan","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PETRO:Jurnal Ilmiah Teknik Perminyakan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25105/PETRO.V10I1.8582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Energy Saving and Efficiency Methods in the Petrochemical Industry are indispensable for the petroleum industry. Energy saving and efficiency is now recognized as the most important goal worldwide. Therefore, it is currently common to combine traditional mechanism methods based on momentum transport, energy transport, quality transport (TT) and reaction engineering (RG) (TT-RG), with data-driven artificial intelligence methods. The aim is to achieve production optimization and energy savings. By streamlining and saving energy in the petrochemical industry, we can take petroleum and petrochemicals in a more advanced and efficient direction. The methods that can be used are AP based mechanism method, TT-RG, data-based artificial intelligence method, and hybrid method which combines mechanism and data-driven. For the most appropriate method, we can choose according to our needs by weighing the advantages and disadvantages of each method. Finally, the future development direction for energy efficiency evaluation in complex petrochemical industries is given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综述文章:石油化工行业节能增效方法
石油化工行业的节能增效方法是石油工业不可缺少的。节约能源和提高能效是当今世界公认的最重要的目标。因此,目前常见的是将基于动量输运、能量输运、质量输运(TT)和反应工程(RG) (TT-RG)的传统机理方法与数据驱动的人工智能方法相结合。其目的是实现生产优化和节能。通过对石化行业的精简和节能,我们可以把石油和石化产品带向更先进、更高效的方向。可采用的方法有基于AP的机制方法、TT-RG方法、基于数据的人工智能方法以及机制与数据驱动相结合的混合方法。对于最合适的方法,我们可以根据自己的需要,通过权衡每种方法的优缺点来选择。最后,提出了复杂石化行业能效评价的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENGARUH PENAMBAHAN BUBUK KULIT PISANG TERHADAP FILTRATION LOSS DAN MUD CAKE PADA LUMPUR BERBAHAN DASAR AIR TAWAR UNTUK TEMPERATUR 80oF DAN 200oF EVALUASI PENANGGULANGAN LOST CIRCULATION LAPANGAN X IMPLEMENTATION OF PSC COST RECOVERY AND PSC GROSS SPLIT CONTRACTS IN THE IYP FIELD STUDY OF PERMEABILITY PREDICTION USING HYDRAULIC FLOW UNIT (HFU) AND MACHINE LEARNING METHOD IN “BSH” FIELD USULAN REPERFORASI SUMUR S UNTUK OPTIMASI PRODUKSI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1