Online Algorithms for Cost-Effective Cloud Selection with Multiple Demands

Youngmi Jin, M. Hayashi, A. Tagami
{"title":"Online Algorithms for Cost-Effective Cloud Selection with Multiple Demands","authors":"Youngmi Jin, M. Hayashi, A. Tagami","doi":"10.1109/ITC30.2018.00014","DOIUrl":null,"url":null,"abstract":"Cloud computing provides high flexibility for users by offering diverse cloud instances with various leasing periods and prices. Depending on the amount and duration of workload, a user can flexibly choose proper cloud instances to meet her demands. An intrinsic challenge facing the user is which classes of clouds and how many of them to purchase in order to meet her unpredictable demands at minimum cost. We consider an online problem deciding cost-effectively cloud classes and amount of clouds to meet dynamic multiple demands among many cloud classes when no future information of demands is available. We propose two online algorithms achieving O(M) and O(log M + log d_max) competitive ratios where M is the number of available cloud classes and d_max is the maximum demand of a given demand sequence.","PeriodicalId":159861,"journal":{"name":"2018 30th International Teletraffic Congress (ITC 30)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Teletraffic Congress (ITC 30)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC30.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cloud computing provides high flexibility for users by offering diverse cloud instances with various leasing periods and prices. Depending on the amount and duration of workload, a user can flexibly choose proper cloud instances to meet her demands. An intrinsic challenge facing the user is which classes of clouds and how many of them to purchase in order to meet her unpredictable demands at minimum cost. We consider an online problem deciding cost-effectively cloud classes and amount of clouds to meet dynamic multiple demands among many cloud classes when no future information of demands is available. We propose two online algorithms achieving O(M) and O(log M + log d_max) competitive ratios where M is the number of available cloud classes and d_max is the maximum demand of a given demand sequence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多需求的高性价比云选择在线算法
云计算通过提供具有不同租期和价格的各种云实例,为用户提供了高度的灵活性。根据工作量的大小和持续时间,用户可以灵活地选择合适的云实例来满足自己的需求。用户面临的一个内在挑战是,为了以最小的成本满足其不可预测的需求,需要购买哪些类别的云,以及需要购买多少云。我们考虑一个在线问题,在没有未来需求信息的情况下,决定经济有效的云类别和云数量,以满足许多云类别之间的动态多重需求。我们提出了两种在线算法,实现O(M)和O(log M + log d_max)竞争比,其中M是可用云类的数量,d_max是给定需求序列的最大需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling a Win-Win Coexistence Mechanism for WiFi and LTE in Unlicensed Bands Integrating Fractional Brownian Motion Arrivals into the Statistical Network Calculus Statistical Delay Bounds for Automatic Repeat Request Protocols with Pipelining Time Constrained Service-Aware Migration of Virtualized Services for Mobile Edge Computing [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1