Adaptive Exploration of a UAVs Swarm for Distributed Targets Detection and Tracking

M. Cimino, M. Lega, Manilo Monaco, G. Vaglini
{"title":"Adaptive Exploration of a UAVs Swarm for Distributed Targets Detection and Tracking","authors":"M. Cimino, M. Lega, Manilo Monaco, G. Vaglini","doi":"10.5220/0007581708370844","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem of coordinating multiple UAVs for distributed targets detection and tracking, in different technological and environmental settings. The proposed approach is founded on the concept of swarm behavior in multi-agent systems, i.e., a self-formed and self-coordinated team of UAVs which adapts itself to mission-specific environmental layouts. The swarm formation and coordination are inspired by biological mechanisms of flocking and stigmergy, respectively. These mechanisms, suitably combined, make it possible to strike the right balance between global search (exploration) and local search (exploitation) in the environment. The swarm adaptation is based on an evolutionary algorithm with the objective of maximizing the number of tracked targets during a mission or minimizing the time for target discovery. A simulation testbed has been developed and publicly released, on the basis of commercially available UAVs technology and real-world scenarios. Experimental results show that the proposed approach extends and sensibly outperforms a similar approach in the literature.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007581708370844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper focuses on the problem of coordinating multiple UAVs for distributed targets detection and tracking, in different technological and environmental settings. The proposed approach is founded on the concept of swarm behavior in multi-agent systems, i.e., a self-formed and self-coordinated team of UAVs which adapts itself to mission-specific environmental layouts. The swarm formation and coordination are inspired by biological mechanisms of flocking and stigmergy, respectively. These mechanisms, suitably combined, make it possible to strike the right balance between global search (exploration) and local search (exploitation) in the environment. The swarm adaptation is based on an evolutionary algorithm with the objective of maximizing the number of tracked targets during a mission or minimizing the time for target discovery. A simulation testbed has been developed and publicly released, on the basis of commercially available UAVs technology and real-world scenarios. Experimental results show that the proposed approach extends and sensibly outperforms a similar approach in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向分布式目标检测与跟踪的无人机群自适应探索
本文主要研究在不同技术和环境条件下协调多架无人机进行分布式目标探测和跟踪的问题。该方法基于多智能体系统中的群体行为概念,即一个自形成和自协调的无人机团队,该团队能够适应特定任务的环境布局。蜂群的形成和协调分别受到群集和污名的生物学机制的启发。这些机制适当地结合在一起,就有可能在环境中的全局搜索(探索)和局部搜索(利用)之间取得适当的平衡。群适应是基于一种进化算法,其目标是在任务中最大限度地跟踪目标数量或最小化目标发现时间。在商用无人机技术和真实世界场景的基础上,已经开发并公开发布了一个仿真试验台。实验结果表明,所提出的方法扩展并明显优于文献中的类似方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm On Spectrogram Analysis in a Multiple Classifier Fusion Framework for Power Grid Classification Using Electric Network Frequency Semantic Properties of cosine based bias scores for word embeddings Double Trouble? Impact and Detection of Duplicates in Face Image Datasets Detecting Brain Tumors through Multimodal Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1