Sensor space time-varying information flow analysis of multiclass motor imagery through Kalman Smoother and EM algorithm

M. Hamedi, S. Salleh, C. Ting, S. Samdin, alias mohd noor
{"title":"Sensor space time-varying information flow analysis of multiclass motor imagery through Kalman Smoother and EM algorithm","authors":"M. Hamedi, S. Salleh, C. Ting, S. Samdin, alias mohd noor","doi":"10.1109/ICBAPS.2015.7292230","DOIUrl":null,"url":null,"abstract":"Inter-channel time-varying (TV) relationships of scalp neural recordings offer deep understanding of the brain sensory and cognitive functions. This paper develops a state space-based TV multivariate autoregressive (MVAR) model for estimating TV-information flow (IF) recruited by different motor imagery (MI) movements. TV model coefficients are computed through Kalman filter (KF) by incorporating Kalman smoothing approach and expectation-maximization algorithm for model parameter estimation, KS-EM. Volume conduction (VC) problem is also addressed by considering full noise covariate in observation equation. An automated model initialization is also implemented to deliver optimal estimates. TV-partial directed coherence derived from the proposed model is applied for IF analysis. The performance of KS-EM is assessed and compared with dual extended KF and overlapping sliding window-based MVAR models using simulated data. Finally, TV-IF during four different MI movements is studied. Results show the superiority of KS-EM for tracking the rapid signal parameter changes and eliminating the VC effect in the sensor space EEG. Differences in contralateral/ipsilateral TV-IF around alpha and lower beta bands during each MI task reveal the high potential of this feature for BCI applications.","PeriodicalId":243293,"journal":{"name":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBAPS.2015.7292230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Inter-channel time-varying (TV) relationships of scalp neural recordings offer deep understanding of the brain sensory and cognitive functions. This paper develops a state space-based TV multivariate autoregressive (MVAR) model for estimating TV-information flow (IF) recruited by different motor imagery (MI) movements. TV model coefficients are computed through Kalman filter (KF) by incorporating Kalman smoothing approach and expectation-maximization algorithm for model parameter estimation, KS-EM. Volume conduction (VC) problem is also addressed by considering full noise covariate in observation equation. An automated model initialization is also implemented to deliver optimal estimates. TV-partial directed coherence derived from the proposed model is applied for IF analysis. The performance of KS-EM is assessed and compared with dual extended KF and overlapping sliding window-based MVAR models using simulated data. Finally, TV-IF during four different MI movements is studied. Results show the superiority of KS-EM for tracking the rapid signal parameter changes and eliminating the VC effect in the sensor space EEG. Differences in contralateral/ipsilateral TV-IF around alpha and lower beta bands during each MI task reveal the high potential of this feature for BCI applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡尔曼平滑和EM算法的多类运动图像传感器空间时变信息流分析
头皮神经记录的通道间时变(TV)关系提供了对大脑感觉和认知功能的深入了解。提出了一种基于状态空间的电视多元自回归(MVAR)模型,用于估计不同运动想象(MI)运动所吸收的电视信息流(IF)。结合卡尔曼平滑法和模型参数估计的期望最大化算法KS-EM,通过卡尔曼滤波(KF)计算电视模型系数。通过考虑观测方程的全噪声协变量,解决了体积传导问题。还实现了自动模型初始化,以提供最佳估计。由该模型导出的电视部分定向相干被应用于中频分析。利用仿真数据对KS-EM模型的性能进行了评估,并与双扩展KF模型和基于重叠滑动窗的MVAR模型进行了比较。最后,研究了四种不同MI动作中的TV-IF。结果表明,KS-EM在跟踪信号参数的快速变化和消除传感器空间脑电中的VC效应方面具有优势。在每个MI任务中,对侧/同侧在α和下β波段周围的TV-IF的差异揭示了该特征在脑机接口应用中的高潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decrease alpha waves in depression: An electroencephalogram(EEG) study Performance evaluation of automated lung segmentation for High Resolution Computed Tomography (HRCT) thorax images Initial result of body earthing on student stress performance Cardioid graph based ECG biometric using compressed QRS complex Subnanosecond pulsed intense electromagnetic field radiators for non-invasive cancer treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1