M. Liessmann, L. Jensen, I. Balasa, M. Hunnekuhl, A. Büttner, P. Wessels, J. Neumann, D. Ristau
{"title":"Scaling of laser-induced contamination growth at 266nm and 355nm","authors":"M. Liessmann, L. Jensen, I. Balasa, M. Hunnekuhl, A. Büttner, P. Wessels, J. Neumann, D. Ristau","doi":"10.1117/12.2194083","DOIUrl":null,"url":null,"abstract":"The growth of laser-induced contamination (LIC) on optical components in extraterrestrial missions is a known issue especially for the UV spectral region. The Laser Zentrum Hannover e.V. is responsible for the development of a pulsed laser-system operating at a wavelength of 266 nm for the ExoMars mission and for the qualification of used optics and materials regarding LIC. In this context, toluene was utilized which is an often used model contaminant in LIC studies. Test cycles based on the application of the two UV wavelengths 355 nm and 266 nm on fused silica substrates and ARcoated optics are conducted and the observed contamination effects are compared. This scaling allows for a rough estimate of the destructive influence of LIC on space optics degradation at 266 nm. Further tests will be performed with materials integrated into the ExoMars-laser-head under near-operation environmental conditions.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2194083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The growth of laser-induced contamination (LIC) on optical components in extraterrestrial missions is a known issue especially for the UV spectral region. The Laser Zentrum Hannover e.V. is responsible for the development of a pulsed laser-system operating at a wavelength of 266 nm for the ExoMars mission and for the qualification of used optics and materials regarding LIC. In this context, toluene was utilized which is an often used model contaminant in LIC studies. Test cycles based on the application of the two UV wavelengths 355 nm and 266 nm on fused silica substrates and ARcoated optics are conducted and the observed contamination effects are compared. This scaling allows for a rough estimate of the destructive influence of LIC on space optics degradation at 266 nm. Further tests will be performed with materials integrated into the ExoMars-laser-head under near-operation environmental conditions.
在地外任务中,光学元件的激光诱导污染(LIC)的增长是一个众所周知的问题,特别是在紫外光谱区域。汉诺威激光中心(Laser Zentrum Hannover e.V.)负责为ExoMars任务开发波长为266纳米的脉冲激光系统,并对使用过的光学器件和材料进行LIC认证。在这种情况下,使用了甲苯,这是在LIC研究中经常使用的模型污染物。将355nm和266nm两种紫外波长分别应用于熔融二氧化硅基片和ararcoated光学器件上进行了测试循环,并比较了观察到的污染效应。这种缩放可以粗略估计在266nm处LIC对空间光学退化的破坏性影响。在接近操作的环境条件下,将对集成到exomars -激光头中的材料进行进一步的测试。