Energy Management in an Agile Workspace using AI-driven Forecasting and Anomaly Detection

H. Manzoor, A. Khan, Mohammad Al-Quraan, L. Mohjazi, Ahmad Taha, Hasan Abbas, S. Hussain, M. Imran, A. Zoha
{"title":"Energy Management in an Agile Workspace using AI-driven Forecasting and Anomaly Detection","authors":"H. Manzoor, A. Khan, Mohammad Al-Quraan, L. Mohjazi, Ahmad Taha, Hasan Abbas, S. Hussain, M. Imran, A. Zoha","doi":"10.1109/gpecom55404.2022.9815599","DOIUrl":null,"url":null,"abstract":"Smart building technologies transform buildings into agile, sustainable, and health-conscious ecosystems by leveraging IoT platforms. In this regard, we have developed a Persuasive Energy Conscious Network (PECN) at the University of Glasgow to understand the user-centric energy consumption patterns in an agile workspace. PECN consists of desk-level energy monitoring sensors that enable us to develop user-centric models that can be exploited to characterize the normal energy usage behavior of an office occupant. In this study, we make use of staked long short-term memory (LSTM) to forecast future energy demands. Moreover, we employed statistical techniques to automate the detection of anomalous power consumption patterns. Our experimental results indicate that post-anomaly resolution leads to 6.37% improvement in the forecasting accuracy.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Smart building technologies transform buildings into agile, sustainable, and health-conscious ecosystems by leveraging IoT platforms. In this regard, we have developed a Persuasive Energy Conscious Network (PECN) at the University of Glasgow to understand the user-centric energy consumption patterns in an agile workspace. PECN consists of desk-level energy monitoring sensors that enable us to develop user-centric models that can be exploited to characterize the normal energy usage behavior of an office occupant. In this study, we make use of staked long short-term memory (LSTM) to forecast future energy demands. Moreover, we employed statistical techniques to automate the detection of anomalous power consumption patterns. Our experimental results indicate that post-anomaly resolution leads to 6.37% improvement in the forecasting accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用人工智能驱动的预测和异常检测的敏捷工作空间中的能量管理
智能建筑技术通过利用物联网平台,将建筑转变为灵活、可持续和注重健康的生态系统。在这方面,我们在格拉斯哥大学开发了一个有说服力的能源意识网络(PECN)来理解敏捷工作空间中以用户为中心的能源消耗模式。PECN由桌面级能源监测传感器组成,使我们能够开发以用户为中心的模型,可以利用该模型来表征办公室居住者的正常能源使用行为。在这项研究中,我们利用赌注长短期记忆(LSTM)来预测未来的能源需求。此外,我们采用统计技术来自动检测异常的功耗模式。实验结果表明,异常后分辨率使预测精度提高了6.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducted Emissions Analysis of DC-DC Buck Converter A Study on the Effect of Phase Shifter Quantization Error on the Spectral Efficiency Using Neural Network Delay Margin Computation of Generator Excitation Control System with Incommensurate Time Delays Using Critical Eigenvalue Tracing Method ICT Enabled Smart Street Parking System for Smart Cities Experimental Impact Analysis of the Refrigerator Cable Design On Disturbance Power Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1