H. Manzoor, A. Khan, Mohammad Al-Quraan, L. Mohjazi, Ahmad Taha, Hasan Abbas, S. Hussain, M. Imran, A. Zoha
{"title":"Energy Management in an Agile Workspace using AI-driven Forecasting and Anomaly Detection","authors":"H. Manzoor, A. Khan, Mohammad Al-Quraan, L. Mohjazi, Ahmad Taha, Hasan Abbas, S. Hussain, M. Imran, A. Zoha","doi":"10.1109/gpecom55404.2022.9815599","DOIUrl":null,"url":null,"abstract":"Smart building technologies transform buildings into agile, sustainable, and health-conscious ecosystems by leveraging IoT platforms. In this regard, we have developed a Persuasive Energy Conscious Network (PECN) at the University of Glasgow to understand the user-centric energy consumption patterns in an agile workspace. PECN consists of desk-level energy monitoring sensors that enable us to develop user-centric models that can be exploited to characterize the normal energy usage behavior of an office occupant. In this study, we make use of staked long short-term memory (LSTM) to forecast future energy demands. Moreover, we employed statistical techniques to automate the detection of anomalous power consumption patterns. Our experimental results indicate that post-anomaly resolution leads to 6.37% improvement in the forecasting accuracy.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Smart building technologies transform buildings into agile, sustainable, and health-conscious ecosystems by leveraging IoT platforms. In this regard, we have developed a Persuasive Energy Conscious Network (PECN) at the University of Glasgow to understand the user-centric energy consumption patterns in an agile workspace. PECN consists of desk-level energy monitoring sensors that enable us to develop user-centric models that can be exploited to characterize the normal energy usage behavior of an office occupant. In this study, we make use of staked long short-term memory (LSTM) to forecast future energy demands. Moreover, we employed statistical techniques to automate the detection of anomalous power consumption patterns. Our experimental results indicate that post-anomaly resolution leads to 6.37% improvement in the forecasting accuracy.