Physics-based modeling of FinFET RF variability under Shorted- and Independent-Gates bias

A. M. Bughio, S. Guerrieri, F. Bonani, G. Ghione
{"title":"Physics-based modeling of FinFET RF variability under Shorted- and Independent-Gates bias","authors":"A. M. Bughio, S. Guerrieri, F. Bonani, G. Ghione","doi":"10.1109/INMMIC.2017.7927300","DOIUrl":null,"url":null,"abstract":"FinFETs operated with varying bias, and in particular with Short-circuited Gates (SG) or Independent Gates (IG), are actively investigated for RF analog applications. The device process variability is known to vary, at least for DC performances, according to the FINFET bias. This paper presents a novel, comprehensive physics-based variability analysis focused on AC parameters for a double-gate (DG) MOSFET (FinFET) both in SG and IG conditions. The analysis is carried out with a numerically efficient Green's Function technique [1], [2], that exploits a nonlinear variability analysis tool in quasi-linear condition. The AC variability analysis of the FinFET includes selected geometrical and physical parameters, such as the fin width, the source/drain-gate distance and the doping level, whose role is especially relevant for the extraction of the device parasitics' variations. We demonstrate that the sensitivity of the AC parameters differs in the IG and SG case, especially concerning gate capacitances.","PeriodicalId":322300,"journal":{"name":"2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMMIC.2017.7927300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

FinFETs operated with varying bias, and in particular with Short-circuited Gates (SG) or Independent Gates (IG), are actively investigated for RF analog applications. The device process variability is known to vary, at least for DC performances, according to the FINFET bias. This paper presents a novel, comprehensive physics-based variability analysis focused on AC parameters for a double-gate (DG) MOSFET (FinFET) both in SG and IG conditions. The analysis is carried out with a numerically efficient Green's Function technique [1], [2], that exploits a nonlinear variability analysis tool in quasi-linear condition. The AC variability analysis of the FinFET includes selected geometrical and physical parameters, such as the fin width, the source/drain-gate distance and the doping level, whose role is especially relevant for the extraction of the device parasitics' variations. We demonstrate that the sensitivity of the AC parameters differs in the IG and SG case, especially concerning gate capacitances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短栅极和独立栅极偏置下FinFET射频变异性的物理建模
在不同偏置下工作的finfet,特别是短路门(SG)或独立门(IG),正在积极研究用于RF模拟应用的finfet。器件的工艺可变性是已知的,至少对于直流性能而言,根据FINFET的偏置而变化。本文提出了一种新颖的、全面的、基于物理的可变性分析方法,重点研究了双栅(DG) MOSFET (FinFET)在SG和IG条件下的交流参数。分析采用了数值上高效的格林函数技术[1],[2],该技术利用了准线性条件下的非线性变异性分析工具。FinFET的交流可变性分析包括选择几何和物理参数,如翅片宽度、源极/漏极距离和掺杂水平,它们的作用与提取器件寄生变化特别相关。我们证明了在IG和SG情况下,交流参数的灵敏度是不同的,特别是关于栅极电容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 5-GHz Class-E power amplifier with an Inverse Class-B driver on 65nm CMOS mm-Wave RFID for IoT applications Efficient class-E power amplifier for variable load operation Large-signal modeling of multi-finger InP DHBT devices at millimeter-wave frequencies GaAs MMIC tunable active filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1