Drift Adaptation via Joint Distribution Alignment

Bin Zhang, Jie Lu, Guangquan Zhang
{"title":"Drift Adaptation via Joint Distribution Alignment","authors":"Bin Zhang, Jie Lu, Guangquan Zhang","doi":"10.1109/ISKE47853.2019.9170335","DOIUrl":null,"url":null,"abstract":"Machine learning in evolving environment faces challenges due to concept drift. Most concept drift adaptation methods focus on modifying the model. In this paper, a method, Drift Adaptation via Joint Distribution Alignment (DAJDA), is proposed. DAJDA performs a linear transformation to the drift instances instead of modifying model. Instances are transformed into a common feature space, reducing the discrepancy of distributions before and after drift. Experimental studies show that DAJDA has abilities to improve the performance of learning model under concept drift.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning in evolving environment faces challenges due to concept drift. Most concept drift adaptation methods focus on modifying the model. In this paper, a method, Drift Adaptation via Joint Distribution Alignment (DAJDA), is proposed. DAJDA performs a linear transformation to the drift instances instead of modifying model. Instances are transformed into a common feature space, reducing the discrepancy of distributions before and after drift. Experimental studies show that DAJDA has abilities to improve the performance of learning model under concept drift.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过联合分布对齐的漂移适应
在不断变化的环境中,机器学习面临着概念漂移的挑战。大多数概念漂移自适应方法都侧重于对模型的修改。本文提出了一种基于联合分布对齐的漂移自适应方法。DAJDA对漂移实例执行线性转换,而不是修改模型。实例被转换成公共特征空间,减小了漂移前后分布的差异。实验研究表明,DAJDA能够提高概念漂移下学习模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Learning for Transductive SVMs ISKE 2019 Table of Contents Consensus: The Minimum Cost Model based Robust Optimization A Learned Clause Deletion Strategy Based on Distance Ratio Effects of Real Estate Regulation Policy of Beijing Based on Discrete Dependent Variables Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1