{"title":"Efficient electromagnetic optimization using self-adjoint Jacobian computation based on a central-node FDFD method","authors":"Xiaying Zhu, A. Hasib, N. Nikolova, M. Bakr","doi":"10.1109/MWSYM.2008.4632998","DOIUrl":null,"url":null,"abstract":"We propose a sensitivity solver for frequency-domain analysis engines based on volume methods such as the finite-element method. Our sensitivity solver computes S-parameter Jacobians directly from the field solution available from the electromagnetic simulation. The computational overhead is a fraction of that of the simulation itself. It is independent from the simulator’s grid, system equations and discretization method. It uses its own finite-difference grid and a sensitivity formula based on the frequency-domain finite-difference (FDFD) equation for the electric field. It computes the S-parameter gradients in the design parameter space through a self-adjoint formulation which eliminates adjoint system analyses and greatly simplifies implementation. We use our sensitivity solver in gradient-based optimization of filters. We achieve drastic reduction of the time required by the overall optimization process. All examples use a commercial finite-element simulator.","PeriodicalId":273767,"journal":{"name":"2008 IEEE MTT-S International Microwave Symposium Digest","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2008.4632998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We propose a sensitivity solver for frequency-domain analysis engines based on volume methods such as the finite-element method. Our sensitivity solver computes S-parameter Jacobians directly from the field solution available from the electromagnetic simulation. The computational overhead is a fraction of that of the simulation itself. It is independent from the simulator’s grid, system equations and discretization method. It uses its own finite-difference grid and a sensitivity formula based on the frequency-domain finite-difference (FDFD) equation for the electric field. It computes the S-parameter gradients in the design parameter space through a self-adjoint formulation which eliminates adjoint system analyses and greatly simplifies implementation. We use our sensitivity solver in gradient-based optimization of filters. We achieve drastic reduction of the time required by the overall optimization process. All examples use a commercial finite-element simulator.